
Anymail Documentation
Release 10.1

Anymail contributors

Jul 31, 2023

USING ANYMAIL

1 Documentation 3
1.1 Anymail 1-2-3 . 3
1.2 Installation and configuration . 4
1.3 Sending email . 9
1.4 Receiving mail . 29
1.5 Supported ESPs . 36
1.6 Tips, tricks, and advanced usage . 90
1.7 Help . 97
1.8 Contributing . 99
1.9 Changelog . 101
1.10 Anymail documentation privacy . 126

Python Module Index 127

Index 129

i

ii

Anymail Documentation, Release 10.1

Version 10.1

Anymail lets you send and receive email in Django using your choice of transactional email service providers (ESPs).
It extends the standard django.core.mail with many common ESP-added features, providing a consistent API that
avoids locking your code to one specific ESP (and making it easier to change ESPs later if needed).

Anymail currently supports these ESPs:

• Amazon SES
• Brevo (formerly SendinBlue)

• MailerSend
• Mailgun
• Mailjet
• Mandrill (MailChimp transactional)

• Postal (self-hosted ESP)

• Postmark
• SendGrid
• SparkPost

Anymail includes:

• Integration of each ESP’s sending APIs into Django’s built-in email package, including support for HTML,
attachments, extra headers, and other standard email features

• Extensions to expose common ESP-added functionality, like tags, metadata, and tracking, with code that’s
portable between ESPs

• Simplified inline images for HTML email

• Normalized sent-message status and tracking notification, by connecting your ESP’s webhooks to Django signals

• “Batch transactional” sends using your ESP’s merge and template features

• Inbound message support, to receive email through your ESP’s webhooks, with simplified, portable access to
attachments and other inbound content

Anymail maintains compatibility with all Django versions that are in mainstream or extended support, plus (usually) a
few older Django versions, and is extensively tested on all Python versions supported by Django. (Even-older Django
versions may still be covered by an Anymail extended support release; consult the changelog for details.)

Anymail releases follow semantic versioning. The package is released under the BSD license.

USING ANYMAIL 1

https://docs.djangoproject.com/en/stable/topics/email/#module-django.core.mail
https://docs.djangoproject.com/en/stable/topics/email/
https://anymail.dev/en/stable/changelog/
https://semver.org/

Anymail Documentation, Release 10.1

2 USING ANYMAIL

CHAPTER

ONE

DOCUMENTATION

1.1 Anymail 1-2-3

Here’s how to send a message. This example uses Mailgun, but you can substitute Mailjet or Postmark or SendGrid or
SparkPost or any other supported ESP where you see “mailgun”:

1. Install Anymail from PyPI:

$ pip install "django-anymail[mailgun]"

(The [mailgun] part installs any additional packages needed for that ESP. Mailgun doesn’t have any, but some
other ESPs do.)

2. Edit your project’s settings.py:

INSTALLED_APPS = [
...
"anymail",
...

]

ANYMAIL = {
(exact settings here depend on your ESP...)
"MAILGUN_API_KEY": "<your Mailgun key>",
"MAILGUN_SENDER_DOMAIN": 'mg.example.com', # your Mailgun domain, if needed

}
EMAIL_BACKEND = "anymail.backends.mailgun.EmailBackend" # or sendgrid.EmailBackend,
→˓ or...
DEFAULT_FROM_EMAIL = "you@example.com" # if you don't already have this in settings
SERVER_EMAIL = "your-server@example.com" # ditto (default from-email for Django␣
→˓errors)

3. Now the regular Django email functions will send through your chosen ESP:

from django.core.mail import send_mail

send_mail("It works!", "This will get sent through Mailgun",
"Anymail Sender <from@example.com>", ["to@example.com"])

You could send an HTML message, complete with an inline image, custom tags and metadata:

3

https://docs.djangoproject.com/en/stable/topics/email/

Anymail Documentation, Release 10.1

from django.core.mail import EmailMultiAlternatives
from anymail.message import attach_inline_image_file

msg = EmailMultiAlternatives(
subject="Please activate your account",
body="Click to activate your account: https://example.com/activate",
from_email="Example <admin@example.com>",
to=["New User <user1@example.com>", "account.manager@example.com"],
reply_to=["Helpdesk <support@example.com>"])

Include an inline image in the html:
logo_cid = attach_inline_image_file(msg, "/path/to/logo.jpg")
html = """

<p>Please activate
your account</p>""".format(logo_cid=logo_cid)

msg.attach_alternative(html, "text/html")

Optional Anymail extensions:
msg.metadata = {"user_id": "8675309", "experiment_variation": 1}
msg.tags = ["activation", "onboarding"]
msg.track_clicks = True

Send it:
msg.send()

Problems? We have some Troubleshooting info that may help.

Now what?

Now that you’ve got Anymail working, you might be interested in:

• Sending email with Anymail

• Receiving inbound email

• ESP-specific information

• All the docs

1.2 Installation and configuration

1.2.1 Installing Anymail

To use Anymail in your Django project:

1. Install the django-anymail app. It’s easiest to install from PyPI using pip:

$ pip install "django-anymail[sendgrid,sparkpost]"

The [sendgrid,sparkpost] part of that command tells pip you also want to install additional packages re-
quired for those ESPs. You can give one or more comma-separated, lowercase ESP names. (Most ESPs don’t
have additional requirements, so you can often just skip this. Or change your mind later. Anymail will let you
know if there are any missing dependencies when you try to use it.)

4 Chapter 1. Documentation

Anymail Documentation, Release 10.1

2. Edit your Django project’s settings.py, and add anymail to your INSTALLED_APPS (anywhere in the list):

INSTALLED_APPS = [
...
"anymail",
...

]

3. Also in settings.py, add an ANYMAIL settings dict, substituting the appropriate settings for your ESP. E.g.:

ANYMAIL = {
"MAILGUN_API_KEY": "<your Mailgun key>",

}

The exact settings vary by ESP. See the supported ESPs section for specifics.

Then continue with either or both of the next two sections, depending on which Anymail features you want to use.

1.2.2 Configuring Django’s email backend

To use Anymail for sending email from Django, make additional changes in your project’s settings.py. (Skip this
section if you are only planning to receive email.)

1. Change your existing Django EMAIL_BACKEND to the Anymail backend for your ESP. For example, to send using
Mailgun by default:

EMAIL_BACKEND = "anymail.backends.mailgun.EmailBackend"

(EMAIL_BACKEND sets Django’s default for sending emails; you can also use multiple Anymail backends to send
particular messages through different ESPs.)

2. If you don’t already have DEFAULT_FROM_EMAIL and SERVER_EMAIL in your settings, this is a good time to add
them. (Django’s defaults are “webmaster@localhost” and “root@localhost”, respectively, and most ESPs won’t
allow sending from those addresses.)

With the settings above, you are ready to send outgoing email through your ESP. If you also want to enable status
tracking or inbound handling, continue with the settings below. Otherwise, skip ahead to Sending email.

1.2.3 Configuring tracking and inbound webhooks

Anymail can optionally connect to your ESP’s event webhooks to notify your app of:

• status tracking events for sent email, like bounced or rejected messages, successful delivery, message opens and
clicks, etc.

• inbound message events, if you are set up to receive email through your ESP

Skip this section if you won’t be using Anymail’s webhooks.

Warning: Webhooks are ordinary urls, and are wide open to the internet. You must use care to avoid creating
security vulnerabilities that could expose your users’ emails and other private information, or subject your app to
malicious input data.

At a minimum, your site should use https and you should configure a webhook secret as described below.

See Securing webhooks for additional information.

1.2. Installation and configuration 5

https://docs.djangoproject.com/en/stable/ref/settings/#std-setting-INSTALLED_APPS
https://docs.djangoproject.com/en/stable/ref/settings/#std-setting-EMAIL_BACKEND
https://docs.djangoproject.com/en/stable/ref/settings/#std-setting-EMAIL_BACKEND
https://docs.djangoproject.com/en/stable/ref/settings/#std-setting-DEFAULT_FROM_EMAIL
https://docs.djangoproject.com/en/stable/ref/settings/#std-setting-SERVER_EMAIL

Anymail Documentation, Release 10.1

If you want to use Anymail’s inbound or tracking webhooks:

1. In your settings.py, add WEBHOOK_SECRET to the ANYMAIL block:

ANYMAIL = {
...
'WEBHOOK_SECRET': '<a random string>:<another random string>',

}

This setting should be a string with two sequences of random characters, separated by a colon. It is used as a
shared secret, known only to your ESP and your Django app, to ensure nobody else can call your webhooks.

We suggest using 16 characters (or more) for each half of the secret. Always generate a new, random secret just
for this purpose. (Don’t use your Django secret key or ESP’s API key.)

An easy way to generate a random secret is to run this command in a shell:

$ python -c "from django.utils import crypto; print(':'.join(crypto.get_random_
→˓string(16) for _ in range(2)))"

(This setting is actually an HTTP basic auth string. You can also set it to a list of auth strings, to simplify
credential rotation or use different auth with different ESPs. See ANYMAIL_WEBHOOK_SECRET in the Securing
webhooks docs for more details.)

2. In your project’s urls.py, add routing for the Anymail webhook urls:

from django.urls import include, path

urlpatterns = [
...
path("anymail/", include("anymail.urls")),

]

(You can change the “anymail” prefix in the first parameter to path() if you’d like the webhooks to be served at
some other URL. Just match whatever you use in the webhook URL you give your ESP in the next step.)

3. Enter the webhook URL(s) into your ESP’s dashboard or control panel. In most cases, the URL will be:

https://random:random@yoursite.example.com/anymail/esp/type/

• “https” (rather than http) is strongly recommended

• random:random is the WEBHOOK_SECRET string you created in step 1

• yoursite.example.com is your Django site

• “anymail” is the url prefix (from step 2)

• esp is the lowercase name of your ESP (e.g., “sendgrid” or “mailgun”)

• type is either “tracking” for Anymail’s sent-mail event tracking webhooks, or “inbound” for receiving email

Some ESPs support different webhooks for different tracking events. You can usually enter the same Anymail
tracking webhook URL for all of them (or all that you want to receive)—but be sure to use the separate inbound
URL for inbound webhooks. And always check the specific details for your ESP under Supported ESPs.

Also, some ESPs try to validate the webhook URL immediately when you enter it. If so, you’ll need to deploy
your Django project to your live server before you can complete this step.

Some WSGI servers may need additional settings to pass HTTP authorization headers through to Django. For example,
Apache with mod_wsgi requires WSGIPassAuthorization On, else Anymail will complain about “missing or invalid
basic auth” when your webhook is called.

6 Chapter 1. Documentation

https://docs.djangoproject.com/en/stable/ref/urls/#django.urls.path
https://modwsgi.readthedocs.io/en/latest/configuration-directives/WSGIPassAuthorization.html

Anymail Documentation, Release 10.1

See Tracking sent mail status for information on creating signal handlers and the status tracking events you can receive.
See Receiving mail for information on receiving inbound message events.

1.2.4 Anymail settings reference

You can add Anymail settings to your project’s settings.py either as a single ANYMAIL dict, or by breaking out
individual settings prefixed with ANYMAIL_. So this settings dict:

ANYMAIL = {
"MAILGUN_API_KEY": "12345",
"SEND_DEFAULTS": {

"tags": ["myapp"]
},

}

. . . is equivalent to these individual settings:

ANYMAIL_MAILGUN_API_KEY = "12345"
ANYMAIL_SEND_DEFAULTS = {"tags": ["myapp"]}

In addition, for some ESP settings like API keys, Anymail will look for a setting without the ANYMAIL_ prefix if it can’t
find the Anymail one. (This can be helpful if you are using other Django apps that work with the same ESP.)

MAILGUN_API_KEY = "12345" # used only if neither ANYMAIL["MAILGUN_API_KEY"]
nor ANYMAIL_MAILGUN_API_KEY have been set

Finally, for complex use cases, you can override most settings on a per-instance basis by providing keyword args
where the instance is initialized (e.g., in a get_connection() call to create an email backend instance, or in a View.
as_view() call to set up webhooks in a custom urls.py). To get the kwargs parameter for a setting, drop “ANYMAIL”
and the ESP name, and lowercase the rest: e.g., you can override ANYMAIL_MAILGUN_API_KEY for a particu-
lar connection by calling get_connection("anymail.backends.mailgun.EmailBackend", api_key="abc").
See Mixing email backends for an example.

There are specific Anymail settings for each ESP (like API keys and urls). See the supported ESPs section for details.
Here are the other settings Anymail supports:

IGNORE_RECIPIENT_STATUS

Set to True to disable AnymailRecipientsRefused exceptions on invalid or rejected recipients. (Default False.)
See Refused recipients.

ANYMAIL = {
...
"IGNORE_RECIPIENT_STATUS": True,

}

1.2. Installation and configuration 7

https://docs.djangoproject.com/en/stable/topics/email/#django.core.mail.get_connection
https://docs.python.org/3.10/library/constants.html#True
https://docs.python.org/3.10/library/constants.html#False

Anymail Documentation, Release 10.1

SEND_DEFAULTS and ESP_SEND_DEFAULTS

A dict of default options to apply to all messages sent through Anymail. See Global send defaults.

IGNORE_UNSUPPORTED_FEATURES

Whether Anymail should raise AnymailUnsupportedFeature errors for email with features that can’t be accurately
communicated to the ESP. Set to True to ignore these problems and send the email anyway. See Unsupported features.
(Default False.)

WEBHOOK_SECRET

A 'random:random' shared secret string. Anymail will reject incoming webhook calls from your ESP that don’t
include this authentication. You can also give a list of shared secret strings, and Anymail will allow ESP webhook calls
that match any of them (to facilitate credential rotation). See Securing webhooks.

Default is unset, which leaves your webhooks insecure. Anymail will warn if you try to use webhooks without a shared
secret.

This is actually implemented using HTTP basic authentication, and the string is technically a “username:password”
format. But you should not use any real username or password for this shared secret.

REQUESTS_TIMEOUT

For Requests-based Anymail backends, the timeout value used for all API calls to your ESP. The default is 30 seconds.
You can set to a single float, a 2-tuple of floats for separate connection and read timeouts, or None to disable timeouts
(not recommended). See Timeouts in the Requests docs for more information.

DEBUG_API_REQUESTS

New in version 4.3.

When set to True, outputs the raw API communication with the ESP, to assist in debugging. Each HTTP request and
ESP response is dumped to sys.stdout once the response is received.

Caution: Do not enable DEBUG_API_REQUESTS in production deployments. The debug output will include your
API keys, email addresses, and other sensitive data that you generally don’t want to capture in server logs or reveal
on the console.

DEBUG_API_REQUESTS only applies to sending email through Requests-based Anymail backends. For other
backends, there may be similar debugging facilities available in the ESP’s API wrapper package (e.g., boto3.
set_stream_logger for Amazon SES).

8 Chapter 1. Documentation

https://docs.python.org/3.10/library/stdtypes.html#dict
https://docs.python.org/3.10/library/constants.html#True
https://docs.python.org/3.10/library/constants.html#False
https://docs.python.org/3.10/library/constants.html#None
https://requests.readthedocs.io/en/stable/user/advanced/#timeouts
https://docs.python.org/3.10/library/constants.html#True
https://docs.python.org/3.10/library/sys.html#sys.stdout

Anymail Documentation, Release 10.1

1.3 Sending email

1.3.1 Django email support

Anymail builds on Django’s core email functionality. If you are already sending email using Django’s default SMTP
EmailBackend, switching to Anymail will be easy. Anymail is designed to “just work” with Django.

If you’re not familiar with Django’s email functions, please take a look at Sending email in the Django docs first.

Anymail supports most of the functionality of Django’s EmailMessage and EmailMultiAlternatives classes.

Anymail handles all outgoing email sent through Django’s django.core.mail module, including send_mail(),
send_mass_mail(), the EmailMessage class, and even mail_admins(). If you’d like to selectively send only some
messages through Anymail, or you’d like to use different ESPs for particular messages, there are ways to use multiple
email backends.

HTML email

To send an HTML message, you can simply use Django’s send_mail() function with the html_message parameter:

from django.core.mail import send_mail

send_mail("Subject", "text body", "from@example.com",
["to@example.com"], html_message="<html>html body</html>")

However, many Django email capabilities—and additional Anymail features—are only available when working with
an EmailMultiAlternatives object. Use its attach_alternative() method to send HTML:

from django.core.mail import EmailMultiAlternatives

msg = EmailMultiAlternatives("Subject", "text body",
"from@example.com", ["to@example.com"])

msg.attach_alternative("<html>html body</html>", "text/html")
you can set any other options on msg here, then...
msg.send()

It’s good practice to send equivalent content in your plain-text body and the html version.

AMP Email

Django’s EmailMultiAlternatives also supports sending AMP for email content. Attach the AMP alternative with
the MIME type text/x-amp-html. Add the AMPHTML first, before the regular html alternative, to keep the parts in
the recommended order:

from django.core.mail import EmailMultiAlternatives

msg = EmailMultiAlternatives("Subject", "text body",
"from@example.com", ["to@example.com"])

msg.attach_alternative("<!doctype html><html amp4email data-css-strict>...",
"text/x-amp-html")

msg.attach_alternative("<!doctype html><html>...", "text/html")
msg.send()

1.3. Sending email 9

https://docs.djangoproject.com/en/stable/topics/email/#django.core.mail.backends.smtp.EmailBackend
https://docs.djangoproject.com/en/stable/topics/email/
https://docs.djangoproject.com/en/stable/topics/email/#django.core.mail.EmailMessage
https://docs.djangoproject.com/en/stable/topics/email/#module-django.core.mail
https://docs.djangoproject.com/en/stable/topics/email/#django.core.mail.send_mail
https://docs.djangoproject.com/en/stable/topics/email/#django.core.mail.send_mass_mail
https://docs.djangoproject.com/en/stable/topics/email/#django.core.mail.EmailMessage
https://docs.djangoproject.com/en/stable/topics/email/#django.core.mail.mail_admins
https://docs.djangoproject.com/en/stable/topics/email/#django.core.mail.send_mail
https://amp.dev/about/email/

Anymail Documentation, Release 10.1

Not all ESPs allow AMPHTML (check the chart under Supported ESPs). If yours doesn’t, trying to send AMP content
will raise an unsupported feature error.

Attachments

Anymail will send a message’s attachments to your ESP. You can add attachments with the attach() or
attach_file() methods of Django’s EmailMessage.

Note that some ESPs impose limits on the size and type of attachments they will send.

Inline images

If your message has any attachments with Content-Disposition: inline headers, Anymail will tell your ESP to
treat them as inline rather than ordinary attached files. If you want to reference an attachment from an in your
HTML source, the attachment also needs a Content-ID header.

Anymail comes with attach_inline_image() and attach_inline_image_file() convenience functions that do
the right thing. See Inline images in the “Anymail additions” section.

(If you prefer to do the work yourself, Python’s MIMEImage and add_header() should be helpful.)

Even if you mark an attachment as inline, some email clients may decide to also display it as an attachment. This is
largely outside your control.

Changed in version 4.3: For convenience, Anymail will treat an attachment with a Content-ID but no
Content-Disposition as inline. (Many—though not all—email clients make the same assumption. But
to ensure consistent behavior with non-Anymail email backends, you should always set both Content-ID and
Content-Disposition: inline headers for inline images. Or just use Anymail’s inline image helpers, which
handle this for you.)

Additional headers

Anymail passes additional headers to your ESP. (Some ESPs may limit which headers they’ll allow.) EmailMessage
expects a dict of headers:

Use `headers` when creating an EmailMessage
msg = EmailMessage(...

headers={
"List-Unsubscribe": unsubscribe_url,
"X-Example-Header": "myapp",

}
)

Or use the `extra_headers` attribute later
msg.extra_headers["In-Reply-To"] = inbound_msg["Message-ID"]

Anymail treats header names as case-insensitive (because that’s how email handles them). If you supply multiple
headers that differ only in case, only one of them will make it into the resulting email.

Django’s default SMTP EmailBackend has special handling for certain headers. Anymail replicates its behavior for
compatibility:

• If you supply a “Reply-To” header, it will override the message’s reply_to attribute.

10 Chapter 1. Documentation

https://docs.djangoproject.com/en/stable/topics/email/#django.core.mail.EmailMessage
https://docs.python.org/3.10/library/email.mime.html#email.mime.image.MIMEImage
https://docs.python.org/3.10/library/email.compat32-message.html#email.message.Message.add_header
https://docs.python.org/3.10/library/stdtypes.html#dict
https://docs.djangoproject.com/en/stable/topics/email/#django.core.mail.backends.smtp.EmailBackend
https://docs.djangoproject.com/en/stable/topics/email/#django.core.mail.EmailMessage

Anymail Documentation, Release 10.1

• If you supply a “From” header, it will override the message’s from_email and become the From field the recip-
ient sees. In addition, the original from_email value will be used as the message’s envelope_sender, which
becomes the Return-Path at the recipient end. (Only if your ESP supports altering envelope sender, otherwise
you’ll get an unsupported feature error.)

• If you supply a “To” header, you’ll usually get an unsupported feature error. With Django’s SMTP EmailBackend,
this can be used to show the recipient a To address that’s different from the actual envelope recipients in the
message’s to list. Spoofing the To header like this is popular with spammers, and almost none of Anymail’s
supported ESPs allow it.

Unsupported features

Some email capabilities aren’t supported by all ESPs. When you try to send a message using features Anymail can’t
communicate to the current ESP, you’ll get an AnymailUnsupportedFeature error, and the message won’t be sent.

For example, very few ESPs support alternative message parts added with attach_alternative() (other than a
single text/html part that becomes the HTML body). If you try to send a message with other alternative parts,
Anymail will raise AnymailUnsupportedFeature. If you’d like to silently ignore AnymailUnsupportedFeature
errors and send the messages anyway, set "IGNORE_UNSUPPORTED_FEATURES" to True in your settings.py:

ANYMAIL = {
...
"IGNORE_UNSUPPORTED_FEATURES": True,

}

Refused recipients

If all recipients (to, cc, bcc) of a message are invalid or rejected by your ESP at send time, the send call will raise an
AnymailRecipientsRefused error.

You can examine the message’s anymail_status attribute to determine the cause of the error. (See ESP send status.)

If a single message is sent to multiple recipients, and any recipient is valid (or the message is queued by your ESP
because of rate limiting or send_at), then this exception will not be raised. You can still examine the message’s
anymail_status property after the send to determine the status of each recipient.

You can disable this exception by setting "IGNORE_RECIPIENT_STATUS" to True in your settings.py ANYMAIL dict,
which will cause Anymail to treat any response from your ESP (other than an API error) as a successful send.

Note: Most ESPs don’t check recipient status during the send API call. For example, Mailgun always queues sent
messages, so you’ll never catch AnymailRecipientsRefused with the Mailgun backend.

You can use Anymail’s delivery event tracking if you need to be notified of sends to suppression-listed or invalid emails.

1.3. Sending email 11

https://docs.djangoproject.com/en/stable/topics/email/#django.core.mail.EmailMessage
https://docs.djangoproject.com/en/stable/topics/email/#django.core.mail.EmailMessage
https://docs.djangoproject.com/en/stable/topics/email/#django.core.mail.EmailMessage
https://docs.python.org/3.10/library/constants.html#True
https://docs.python.org/3.10/library/constants.html#True

Anymail Documentation, Release 10.1

1.3.2 Anymail additions

Anymail normalizes several common ESP features, like adding metadata or tags to a message. It also normalizes the
response from the ESP’s send API.

There are three ways you can use Anymail’s ESP features with your Django email:

• Just use Anymail’s added attributes directly on any Django EmailMessage object (or any subclass).

• Create your email message using the AnymailMessage class, which exposes extra attributes for the ESP features.

• Use the AnymailMessageMixin to add the Anymail extras to some other EmailMessage-derived class (your
own or from another Django package).

The first approach is usually the simplest. The other two can be helpful if you are working with Python development
tools that offer type checking or other static code analysis.

ESP send options (AnymailMessage)

Availability of each of these features varies by ESP, and there may be additional limitations even when an ESP does
support a particular feature. Be sure to check Anymail’s docs for your specific ESP. If you try to use a feature your ESP
does not offer, Anymail will raise an unsupported feature error.

class anymail.message.AnymailMessage

A subclass of Django’s EmailMultiAlternatives that exposes additional ESP functionality.

The constructor accepts any of the attributes below, or you can set them directly on the message at any time
before sending:

from anymail.message import AnymailMessage

message = AnymailMessage(
subject="Welcome",
body="Welcome to our site",
to=["New User <user1@example.com>"],
tags=["Onboarding"], # Anymail extra in constructor

)
Anymail extra attributes:
message.metadata = {"onboarding_experiment": "variation 1"}
message.track_clicks = True

message.send()
status = message.anymail_status # available after sending
status.message_id # e.g., '<12345.67890@example.com>'
status.recipients["user1@example.com"].status # e.g., 'queued'

12 Chapter 1. Documentation

https://docs.djangoproject.com/en/stable/topics/email/#django.core.mail.EmailMessage

Anymail Documentation, Release 10.1

Attributes you can add to messages

Note: Anymail looks for these attributes on any EmailMessage you send. (You don’t have to use
AnymailMessage.)

envelope_sender

Set this to a str email address that should be used as the message’s envelope sender. If supported by your
ESP, this will become the Return-Path in the recipient’s mailbox.

(Envelope sender is also known as bounce address, MAIL FROM, envelope from, unixfrom, SMTP FROM
command, return path, and several other terms. Confused? Here’s some good info on how envelope sender
relates to return path.)

ESP support for envelope sender varies widely. Be sure to check Anymail’s docs for your specific ESP
before attempting to use it. And note that those ESPs who do support it will often use only the domain
portion of the envelope sender address, overriding the part before the @ with their own encoded bounce
mailbox.

[The envelope_sender attribute is unique to Anymail. If you also use Django’s SMTP EmailBackend,
you can portably control envelope sender by instead setting message.extra_headers["From"] to the
desired email header From, and message.from_email to the envelope sender. Anymail also allows this
approach, for compatibility with the SMTP EmailBackend. See the notes in Django’s bug tracker.]

metadata

If your ESP supports tracking arbitrary metadata, you can set this to a dict of metadata values the ESP
should store with the message, for later search and retrieval. This can be useful with Anymail’s status
tracking webhooks.

message.metadata = {"customer": customer.id,
"order": order.reference_number}

ESPs have differing restrictions on metadata content. For portability, it’s best to stick to alphanumeric keys,
and values that are numbers or strings.

You should format any non-string data into a string before setting it as metadata. See Formatting merge
data.

Depending on the ESP, this metadata could be exposed to the recipients in the message headers, so don’t
include sensitive data.

merge_metadata

On a message with multiple recipients, if your ESP supports it, you can set this to a dict of per-recipient
metadata values the ESP should store with the message, for later search and retrieval. Each key in the dict
is a recipient email (address portion only), and its value is a dict of metadata for that recipient:

message.to = ["wile@example.com", "Mr. Runner <rr@example.com>"]
message.merge_metadata = {

"wile@example.com": {"customer": 123, "order": "acme-zxyw"},
"rr@example.com": {"customer": 45678, "order": "acme-wblt"},

}

When merge_metadata is set, Anymail will use the ESP’s batch sending option, so that each to recipient
gets an individual message (and doesn’t see the other emails on the to list).

All of the notes on metadata keys and value formatting also apply to merge_metadata. If there are
conflicting keys, the merge_metadata values will take precedence over metadata for that recipient.

1.3. Sending email 13

https://docs.djangoproject.com/en/stable/topics/email/#django.core.mail.EmailMessage
https://docs.python.org/3.10/library/stdtypes.html#str
https://en.wikipedia.org/wiki/Bounce_address
https://www.postmastery.com/blog/about-the-return-path-header/
https://www.postmastery.com/blog/about-the-return-path-header/
https://code.djangoproject.com/ticket/9214
https://docs.python.org/3.10/library/stdtypes.html#dict
https://docs.python.org/3.10/library/stdtypes.html#dict

Anymail Documentation, Release 10.1

Depending on the ESP, this metadata could be exposed to the recipients in the message headers, so don’t
include sensitive data.

tags

If your ESP supports it, you can set this to a list of str tags to apply to the message. This can be useful
for segmenting your ESP’s reports, and is also often used with Anymail’s status tracking webhooks.

message.tags = ["Order Confirmation", "Test Variant A"]

ESPs have differing restrictions on tags. For portability, it’s best to stick with strings that start with an
alphanumeric character. (Also, a few ESPs allow only a single tag per message.)

Caution: Some ESPs put metadata (and a recipient’s merge_metadata) and tags in email headers,
which are included with the email when it is delivered. Anything you put in them could be exposed to the
recipients, so don’t include sensitive data.

track_opens

If your ESP supports open tracking, you can set this to True or False to override your ESP’s default for this
particular message. (Most ESPs let you configure open tracking defaults at the account or sending domain
level.)

For example, if you have configured your ESP to not insert open tracking pixels by default, this will attempt
to enable that for this one message:

message.track_opens = True

track_clicks

If your ESP supports click tracking, you can set this to True or False to override your ESP’s default for this
particular message. (Most ESPs let you configure click tracking defaults at the account or sending domain
level.)

For example, if you have configured your ESP to normally rewrite links to add click tracking, this will
attempt to disable that for this one message:

message.track_clicks = False

send_at

If your ESP supports scheduled transactional sending, you can set this to a datetime to have the ESP delay
sending the message until the specified time. (You can also use a float or int, which will be treated as a
POSIX timestamp as in time.time().)

from datetime import datetime, timedelta, timezone

message.send_at = datetime.now(timezone.utc) + timedelta(hours=1)

To avoid confusion, it’s best to provide either an aware datetime (one that has its tzinfo set), or an int or
float seconds-since-the-epoch timestamp.

If you set send_at to a date or a naive datetime (without a timezone), Anymail will interpret it in
Django’s current timezone. (Careful: datetime.now() returns a naive datetime, unless you call it with a
timezone like in the example above.)

The sent message will be held for delivery by your ESP – not locally by Anymail.

14 Chapter 1. Documentation

https://docs.python.org/3.10/library/stdtypes.html#list
https://docs.python.org/3.10/library/stdtypes.html#str
https://docs.python.org/3.10/library/constants.html#True
https://docs.python.org/3.10/library/constants.html#False
https://docs.python.org/3.10/library/constants.html#True
https://docs.python.org/3.10/library/constants.html#False
https://docs.python.org/3.10/library/datetime.html#datetime.datetime
https://docs.python.org/3.10/library/functions.html#float
https://docs.python.org/3.10/library/functions.html#int
https://docs.python.org/3.10/library/time.html#time.time
https://docs.python.org/3.10/library/datetime.html#datetime.datetime
https://docs.python.org/3.10/library/functions.html#int
https://docs.python.org/3.10/library/functions.html#float
https://docs.python.org/3.10/library/datetime.html#datetime.date
https://docs.python.org/3.10/library/datetime.html#datetime.datetime
https://docs.djangoproject.com/en/stable/topics/i18n/timezones/#default-current-time-zone
https://docs.python.org/3.10/library/datetime.html#datetime.datetime.now

Anymail Documentation, Release 10.1

esp_extra

Although Anymail normalizes common ESP features, many ESPs offer additional functionality that doesn’t
map neatly to Anymail’s standard options. You can use esp_extra as an “escape hatch” to access ESP
functionality that Anymail doesn’t (or doesn’t yet) support.

Set it to a dict of additional, ESP-specific settings for the message. See the notes for each specific ESP for
information on its esp_extra handling.

Using this attribute is inherently non-portable between ESPs, so it’s best to avoid it unless absolutely nec-
essary. If you ever want to switch ESPs, you will need to update or remove all uses of esp_extra to avoid
unexpected behavior.

Status response from the ESP

anymail_status

Normalized response from the ESP API’s send call. Anymail adds this to each EmailMessage as it is sent.

The value is an AnymailStatus. See ESP send status below for details.

Convenience methods

(These methods are only available on AnymailMessage or AnymailMessageMixin objects. Unlike the at-
tributes above, they can’t be used on an arbitrary EmailMessage.)

attach_inline_image_file(path, subtype=None, idstring='img', domain=None)
Attach an inline (embedded) image to the message and return its Content-ID.

This calls attach_inline_image_file() on the message. See Inline images for details and an example.

attach_inline_image(content, filename=None, subtype=None, idstring='img', domain=None)
Attach an inline (embedded) image to the message and return its Content-ID.

This calls attach_inline_image() on the message. See Inline images for details and an example.

ESP send status

class anymail.message.AnymailStatus

When you send a message through an Anymail backend, Anymail adds an anymail_status attribute to the
EmailMessage, with a normalized version of the ESP’s response.

Anymail backends create this attribute as they process each message. Before that, anymail_status won’t be present
on an ordinary Django EmailMessage or EmailMultiAlternatives—you’ll get an AttributeError if you try to
access it.

This might cause problems in your test cases, because Django substitutes its own locmem EmailBackend during
testing (so anymail_status never gets attached to the EmailMessage). If you run into this, you can: change your
code to guard against a missing anymail_status attribute; switch from using EmailMessage to AnymailMessage
(or the AnymailMessageMixin) to ensure the anymail_status attribute is always there; or substitute Anymail’s
test backend in any affected test cases.

After sending through an Anymail backend, anymail_status will be an object with these attributes:

message_id

The message id assigned by the ESP, or None if the send call failed.

The exact format varies by ESP. Some use a UUID or similar; some use an RFC 2822 Message-ID as the
id:

1.3. Sending email 15

https://docs.python.org/3.10/library/stdtypes.html#dict
https://docs.djangoproject.com/en/stable/topics/email/#django.core.mail.EmailMessage
https://docs.djangoproject.com/en/stable/topics/email/#django.core.mail.EmailMessage
https://docs.djangoproject.com/en/stable/topics/email/#django.core.mail.EmailMessage
https://docs.python.org/3.10/library/exceptions.html#AttributeError
https://docs.djangoproject.com/en/stable/topics/testing/tools/#topics-testing-email
https://docs.python.org/3.10/library/constants.html#None
https://datatracker.ietf.org/doc/html/rfc2822.html

Anymail Documentation, Release 10.1

message.anymail_status.message_id
'<20160306015544.116301.25145@example.org>'

Some ESPs assign a unique message ID for each recipient (to, cc, bcc) of a single message. In that case,
message_id will be a set of all the message IDs across all recipients:

message.anymail_status.message_id
set(['16fd2706-8baf-433b-82eb-8c7fada847da',
'886313e1-3b8a-5372-9b90-0c9aee199e5d'])

status

A set of send statuses, across all recipients (to, cc, bcc) of the message, or None if the send call failed.

message1.anymail_status.status
set(['queued']) # all recipients were queued
message2.anymail_status.status
set(['rejected', 'sent']) # at least one recipient was sent,

and at least one rejected

This is an easy way to check there weren't any problems:
if message3.anymail_status.status.issubset({'queued', 'sent'}):

print("ok!")

Anymail normalizes ESP sent status to one of these values:

• 'sent' the ESP has sent the message (though it may or may not end up delivered)

• 'queued' the ESP has accepted the message and will try to send it asynchronously

• 'invalid' the ESP considers the sender or recipient email invalid

• 'rejected' the recipient is on an ESP suppression list (unsubscribe, previous bounces, etc.)

• 'failed' the attempt to send failed for some other reason

• 'unknown' anything else

Not all ESPs check recipient emails during the send API call – some simply queue the message, and report
problems later. In that case, you can use Anymail’s Tracking sent mail status features to be notified of
delivery status events.

recipients

A dict of per-recipient message ID and status values.

The dict is keyed by each recipient’s base email address (ignoring any display name). Each value in the dict
is an object with status and message_id properties:

message = EmailMultiAlternatives(
to=["you@example.com", "Me <me@example.com>"],
subject="Re: The apocalypse")

message.send()

message.anymail_status.recipients["you@example.com"].status
'sent'
message.anymail_status.recipients["me@example.com"].status
'queued'
message.anymail_status.recipients["me@example.com"].message_id
'886313e1-3b8a-5372-9b90-0c9aee199e5d'

16 Chapter 1. Documentation

https://docs.python.org/3.10/library/stdtypes.html#set
https://docs.python.org/3.10/library/stdtypes.html#set
https://docs.python.org/3.10/library/constants.html#None
https://docs.python.org/3.10/library/stdtypes.html#dict

Anymail Documentation, Release 10.1

Will be an empty dict if the send call failed.

esp_response

The raw response from the ESP API call. The exact type varies by backend. Accessing this is inherently
non-portable.

This will work with a requests-based backend,
for an ESP whose send API provides a JSON response:
message.anymail_status.esp_response.json()

Inline images

Anymail includes convenience functions to simplify attaching inline images to email.

These functions work with any Django EmailMessage – they’re not specific to Anymail email backends. You can use
them with messages sent through Django’s SMTP backend or any other that properly supports MIME attachments.

(Both functions are also available as convenience methods on Anymail’s AnymailMessage and
AnymailMessageMixin classes.)

anymail.message.attach_inline_image_file(message, path, subtype=None, idstring='img', domain=None)
Attach an inline (embedded) image to the message and return its Content-ID.

In your HTML message body, prefix the returned id with cid: to make an src attribute:

from django.core.mail import EmailMultiAlternatives
from anymail.message import attach_inline_image_file

message = EmailMultiAlternatives(...)
cid = attach_inline_image_file(message, 'path/to/picture.jpg')
html = '... ...' % cid
message.attach_alternative(html, 'text/html')

message.send()

message must be an EmailMessage (or subclass) object.

path must be the pathname to an image file. (Its basename will also be used as the attachment’s filename, which
may be visible in some email clients.)

subtype is an optional MIME image subtype, e.g., "png" or "jpg". By default, this is determined automatically
from the content.

idstring and domain are optional, and are passed to Python’s make_msgid() to generate the Content-ID.
Generally the defaults should be fine.

Changed in version 4.0: If you don’t supply a domain, Anymail will use the simple string “inline” rather than
make_msgid()’s default local hostname. This avoids a problem with ESPs that confuse Content-ID and at-
tachment filename: if your local server’s hostname ends in “.com”, Gmail could block messages with inline
attachments generated by earlier Anymail versions and sent through these ESPs.

anymail.message.attach_inline_image(message, content, filename=None, subtype=None, idstring='img',
domain=None)

This is a version of attach_inline_image_file() that accepts raw image data, rather than reading it from a
file.

message must be an EmailMessage (or subclass) object.

1.3. Sending email 17

https://docs.djangoproject.com/en/stable/topics/email/#django.core.mail.EmailMessage
https://docs.djangoproject.com/en/stable/topics/email/#django.core.mail.EmailMessage
https://docs.python.org/3.10/library/email.utils.html#email.utils.make_msgid
https://docs.python.org/3.10/library/email.utils.html#email.utils.make_msgid
https://docs.djangoproject.com/en/stable/topics/email/#django.core.mail.EmailMessage

Anymail Documentation, Release 10.1

content must be the binary image data

filename is an optional str that will be used as as the attachment’s filename – e.g., "picture.jpg". This
may be visible in email clients that choose to display the image as an attachment as well as making it available
for inline use (this is up to the email client). It should be a base filename, without any path info.

subtype, idstring and domain are as described in attach_inline_image_file()

Global send defaults

In your settings.py, you can set ANYMAIL_SEND_DEFAULTS to a dict of default options that will apply to all
messages sent through Anymail:

ANYMAIL = {
...
"SEND_DEFAULTS": {

"metadata": {"district": "North", "source": "unknown"},
"tags": ["myapp", "version3"],
"track_clicks": True,
"track_opens": True,

},
}

At send time, the attributes on each EmailMessage get merged with the global send defaults. For example, with the
settings above:

message = AnymailMessage(...)
message.tags = ["welcome"]
message.metadata = {"source": "Ads", "user_id": 12345}
message.track_clicks = False

message.send()
will send with:
tags: ["myapp", "version3", "welcome"] (merged with defaults)
metadata: {"district": "North", "source": "Ads", "user_id": 12345} (merged)
track_clicks: False (message overrides defaults)
track_opens: True (from the defaults)

To prevent a message from using a particular global default, set that attribute to None. (E.g., message.tags = None
will send the message with no tags, ignoring the global default.)

Anymail’s send defaults actually work for all django.core.mail.EmailMessage attributes. So you could set "bcc":
["always-copy@example.com"] to add a bcc to every message. (You could even attach a file to every message –
though your recipients would probably find that annoying!)

You can also set ESP-specific global defaults. If there are conflicts, the ESP-specific value will override the main
SEND_DEFAULTS:

ANYMAIL = {
...
"SEND_DEFAULTS": {

"tags": ["myapp", "version3"],
},
"POSTMARK_SEND_DEFAULTS": {

Postmark only supports a single tag
(continues on next page)

18 Chapter 1. Documentation

https://docs.python.org/3.10/library/stdtypes.html#str
https://docs.python.org/3.10/library/stdtypes.html#dict
https://docs.djangoproject.com/en/stable/topics/email/#django.core.mail.EmailMessage
https://docs.python.org/3.10/library/constants.html#None

Anymail Documentation, Release 10.1

(continued from previous page)

"tags": ["version3"], # overrides SEND_DEFAULTS['tags'] (not merged!)
},
"MAILGUN_SEND_DEFAULTS": {

"esp_extra": {"o:dkim": "no"}, # Disable Mailgun DKIM signatures
},

}

AnymailMessageMixin

class anymail.message.AnymailMessageMixin

Mixin class that adds Anymail’s ESP extra attributes and convenience methods to other EmailMessage sub-
classes.

For example, with the django-mail-templated package’s custom EmailMessage:

from anymail.message import AnymailMessageMixin
from mail_templated import EmailMessage

class TemplatedAnymailMessage(AnymailMessageMixin, EmailMessage):
"""
An EmailMessage that supports both Mail-Templated
and Anymail features
"""
pass

msg = TemplatedAnymailMessage(
template_name="order_confirmation.tpl", # Mail-Templated arg
track_opens=True, # Anymail arg
...

)
msg.context = {"order_num": "12345"} # Mail-Templated attribute
msg.tags = ["templated"] # Anymail attribute

1.3.3 Batch sending/merge and ESP templates

If your ESP offers templates and batch-sending/merge capabilities, Anymail can simplify using them in a portable way.
Anymail doesn’t translate template syntax between ESPs, but it does normalize using templates and providing merge
data for batch sends.

Here’s an example using both an ESP stored template and merge data:

from django.core.mail import EmailMessage

message = EmailMessage(
subject=None, # use the subject in our stored template
from_email="marketing@example.com",
to=["Wile E. <wile@example.com>", "rr@example.com"])

message.template_id = "after_sale_followup_offer" # use this ESP stored template
message.merge_data = { # per-recipient data to merge into the template

'wile@example.com': {'NAME': "Wile E.",
'OFFER': "15% off anvils"},

(continues on next page)

1.3. Sending email 19

https://docs.djangoproject.com/en/stable/topics/email/#django.core.mail.EmailMessage
https://pypi.org/project/django-mail-templated/

Anymail Documentation, Release 10.1

(continued from previous page)

'rr@example.com': {'NAME': "Mr. Runner"},
}
message.merge_global_data = { # merge data for all recipients

'PARTNER': "Acme, Inc.",
'OFFER': "5% off any Acme product", # a default if OFFER missing for recipient

}
message.send()

The message’s template_id identifies a template stored at your ESP which provides the message body and subject.
(Assuming the ESP supports those features.)

The message’s merge_data supplies the per-recipient data to substitute for merge fields in your template. Setting
this attribute also lets Anymail know it should use the ESP’s batch sending feature to deliver separate, individually-
customized messages to each address on the “to” list. (Again, assuming your ESP supports that.)

Note: Templates and batch sending capabilities can vary widely between ESPs, as can the syntax for merge fields. Be
sure to read the notes for your specific ESP, and test carefully with a small recipient list before launching a gigantic
batch send.

Although related and often used together, ESP stored templates and merge data are actually independent features. For
example, some ESPs will let you use merge field syntax directly in your EmailMessage body, so you can do customized
batch sending without needing to define a stored template at the ESP.

ESP stored templates

Many ESPs support transactional email templates that are stored and managed within your ESP account. To use an
ESP stored template with Anymail, set template_id on an EmailMessage.

AnymailMessage.template_id

The identifier of the ESP stored template you want to use. For most ESPs, this is a str name or unique id. (See
the notes for your specific ESP.)

message.template_id = "after_sale_followup_offer"

With most ESPs, using a stored template will ignore any body (plain-text or HTML) from the EmailMessage object.

A few ESPs also allow you to define the message’s subject as part of the template, but any subject you set on the
EmailMessage will override the template subject. To use the subject stored with the ESP template, set the message’s
subject to None:

message.subject = None # use subject from template (if supported)

Similarly, some ESPs can also specify the “from” address in the template definition. Set message.from_email =
None to use the template’s “from.” (You must set this attribute after constructing an EmailMessage object; pass-
ing from_email=None to the constructor will use Django’s DEFAULT_FROM_EMAIL setting, overriding your template
value.)

20 Chapter 1. Documentation

https://docs.djangoproject.com/en/stable/topics/email/#django.core.mail.EmailMessage
https://docs.djangoproject.com/en/stable/topics/email/#django.core.mail.EmailMessage
https://docs.python.org/3.10/library/stdtypes.html#str
https://docs.djangoproject.com/en/stable/topics/email/#django.core.mail.EmailMessage
https://docs.djangoproject.com/en/stable/topics/email/#django.core.mail.EmailMessage
https://docs.python.org/3.10/library/constants.html#None
https://docs.djangoproject.com/en/stable/topics/email/#django.core.mail.EmailMessage
https://docs.djangoproject.com/en/stable/ref/settings/#std-setting-DEFAULT_FROM_EMAIL

Anymail Documentation, Release 10.1

Batch sending with merge data

Several ESPs support “batch transactional sending,” where a single API call can send messages to multiple recipients.
The message is customized for each email on the “to” list by merging per-recipient data into the body and other message
fields.

To use batch sending with Anymail (for ESPs that support it):

• Use “merge fields” (sometimes called “substitution variables” or similar) in your message. This could be in an
ESP stored template referenced by template_id , or with some ESPs you can use merge fields directly in your
EmailMessage (meaning the message itself is treated as an on-the-fly template).

• Set the message’s merge_data attribute to define merge field substitutions for each recipient, and optionally set
merge_global_data to defaults or values to use for all recipients.

• Specify all of the recipients for the batch in the message’s to list.

Caution: It’s critical to set the merge_data (or merge_metadata) attribute: this is how Anymail recognizes the
message as a batch send.

When you provide merge_data, Anymail will tell the ESP to send an individual customized message to each “to”
address. Without it, you may get a single message to everyone, exposing all of the email addresses to all recipients.
(If you don’t have any per-recipient customizations, but still want individual messages, just set merge_data to an
empty dict.)

The exact syntax for merge fields varies by ESP. It might be something like *|NAME|* or -name- or <%name%>. (Check
the notes for your ESP, and remember you’ll need to change the template if you later switch ESPs.)

AnymailMessage.merge_data

A dict of per-recipient template substitution/merge data. Each key in the dict is a recipient email address, and
its value is a dict of merge field names and values to use for that recipient:

message.merge_data = {
'wile@example.com': {'NAME': "Wile E.",

'OFFER': "15% off anvils"},
'rr@example.com': {'NAME': "Mr. Runner",

'OFFER': "instant tunnel paint"},
}

When merge_data is set, Anymail will use the ESP’s batch sending option, so that each to recipient gets an
individual message (and doesn’t see the other emails on the to list).

AnymailMessage.merge_global_data

A dict of template substitution/merge data to use for all recipients. Keys are merge field names in your message
template:

message.merge_global_data = {
'PARTNER': "Acme, Inc.",
'OFFER': "5% off any Acme product", # a default OFFER

}

Merge data values must be strings. (Some ESPs also allow other JSON-serializable types like lists or dicts.) See
Formatting merge data for more information.

Like all Anymail additions, you can use these extended template and merge attributes with any EmailMessage or
subclass object. (It doesn’t have to be an AnymailMessage.)

1.3. Sending email 21

https://docs.djangoproject.com/en/stable/topics/email/#django.core.mail.EmailMessage
https://docs.python.org/3.10/library/stdtypes.html#dict
https://docs.python.org/3.10/library/stdtypes.html#dict
https://docs.python.org/3.10/library/stdtypes.html#dict
https://docs.djangoproject.com/en/stable/topics/email/#django.core.mail.EmailMessage

Anymail Documentation, Release 10.1

Tip: you can add merge_global_data to your global Anymail send defaults to supply merge data available to all batch
sends (e.g, site name, contact info). The global defaults will be merged with any per-message merge_global_data.

Formatting merge data

If you’re using a date, datetime, Decimal, or anything other than strings and integers, you’ll need to format them
into strings for use as merge data:

product = Product.objects.get(123) # A Django model
total_cost = Decimal('19.99')
ship_date = date(2015, 11, 18)

Won't work -- you'll get "not JSON serializable" errors at send time:
message.merge_global_data = {

'PRODUCT': product,
'TOTAL_COST': total_cost,
'SHIP_DATE': ship_date

}

Do something this instead:
message.merge_global_data = {

'PRODUCT': product.name, # assuming name is a CharField
'TOTAL_COST': "{cost:0.2f}".format(cost=total_cost),
'SHIP_DATE': ship_date.strftime('%B %d, %Y') # US-style "March 15, 2015"

}

These are just examples. You’ll need to determine the best way to format your merge data as strings.

Although floats are usually allowed in merge data, you’ll generally want to format them into strings yourself to avoid
surprises with floating-point precision.

Anymail will raise AnymailSerializationError if you attempt to send a message with merge data (or metadata)
that can’t be sent to your ESP.

ESP templates vs. Django templates

ESP templating languages are generally proprietary, which makes them inherently non-portable.

Anymail only exposes the stored template capabilities that your ESP already offers, and then simplifies providing merge
data in a portable way. It won’t translate between different ESP template syntaxes, and it can’t do a batch send if your
ESP doesn’t support it.

There are two common cases where ESP template and merge features are particularly useful with Anymail:

• When the people who develop and maintain your transactional email templates are different from the people who
maintain your Django page templates. (For example, you use a single ESP for both marketing and transactional
email, and your marketing team manages all the ESP email templates.)

• When you want to use your ESP’s batch-sending capabilities for performance reasons, where a single API call
can trigger individualized messages to hundreds or thousands of recipients. (For example, sending a daily batch
of shipping notifications.)

If neither of these cases apply, you may find that using Django templates can be a more portable and maintainable
approach for building transactional email.

22 Chapter 1. Documentation

https://docs.python.org/3.10/library/datetime.html#module-datetime

Anymail Documentation, Release 10.1

1.3.4 Tracking sent mail status

Anymail provides normalized handling for your ESP’s event-tracking webhooks. You can use this to be notified when
sent messages have been delivered, bounced, been opened or had links clicked, among other things.

Webhook support is optional. If you haven’t yet, you’ll need to configure webhooks in your Django project. (You may
also want to review Securing webhooks.)

Once you’ve enabled webhooks, Anymail will send an anymail.signals.tracking custom Django signal for each
ESP tracking event it receives. You can connect your own receiver function to this signal for further processing.

Be sure to read Django’s listening to signals docs for information on defining and connecting signal receivers.

Example:

from anymail.signals import tracking
from django.dispatch import receiver

@receiver(tracking) # add weak=False if inside some other function/class
def handle_bounce(sender, event, esp_name, **kwargs):

if event.event_type == 'bounced':
print("Message %s to %s bounced" % (

event.message_id, event.recipient))

@receiver(tracking)
def handle_click(sender, event, esp_name, **kwargs):

if event.event_type == 'clicked':
print("Recipient %s clicked url %s" % (

event.recipient, event.click_url))

You can define individual signal receivers, or create one big one for all event types, whichever you prefer. You can
even handle the same event in multiple receivers, if that makes your code cleaner. These signal receiver functions are
documented in more detail below.

Note that your tracking signal receiver(s) will be called for all tracking webhook types you’ve enabled at your ESP, so
you should always check the event_type as shown in the examples above to ensure you’re processing the expected
events.

Some ESPs batch up multiple events into a single webhook call. Anymail will invoke your signal receiver once, sepa-
rately, for each event in the batch.

Normalized tracking event

class anymail.signals.AnymailTrackingEvent

The event parameter to Anymail’s tracking signal receiver is an object with the following attributes:

event_type

A normalized str identifying the type of tracking event.

Note: Most ESPs will send some, but not all of these event types. Check the specific ESP docs for more
details. In particular, very few ESPs implement the “sent” and “delivered” events.

One of:

• 'queued': the ESP has accepted the message and will try to send it (possibly at a later time).

1.3. Sending email 23

https://docs.djangoproject.com/en/stable/topics/signals/
https://docs.djangoproject.com/en/stable/topics/signals/#listening-to-signals
https://docs.python.org/3.10/library/stdtypes.html#str

Anymail Documentation, Release 10.1

• 'sent': the ESP has sent the message (though it may or may not get successfully delivered).

• 'rejected': the ESP refused to send the messsage (e.g., because of a suppression list, ESP policy,
or invalid email). Additional info may be in reject_reason.

• 'failed': the ESP was unable to send the message (e.g., because of an error rendering an ESP
template)

• 'bounced': the message was rejected or blocked by receiving MTA (message transfer agent—the
receiving mail server).

• 'deferred': the message was delayed by in transit (e.g., because of a transient DNS problem, a full
mailbox, or certain spam-detection strategies). The ESP will keep trying to deliver the message, and
should generate a separate 'bounced' event if later it gives up.

• 'delivered': the message was accepted by the receiving MTA. (This does not guarantee the user
will see it. For example, it might still be classified as spam.)

• 'autoresponded': a robot sent an automatic reply, such as a vacation notice, or a request to prove
you’re a human.

• 'opened': the user opened the message (used with your ESP’s track_opens feature).

• 'clicked': the user clicked a link in the message (used with your ESP’s track_clicks feature).

• 'complained': the recipient reported the message as spam.

• 'unsubscribed': the recipient attempted to unsubscribe (when you are using your ESP’s subscrip-
tion management features).

• 'subscribed': the recipient attempted to subscribe to a list, or undo an earlier unsubscribe (when
you are using your ESP’s subscription management features).

• 'unknown': anything else. Anymail isn’t able to normalize this event, and you’ll need to examine the
raw esp_event data.

message_id

A str unique identifier for the message, matching the message.anymail_status.message_id attribute
from when the message was sent.

The exact format of the string varies by ESP. (It may or may not be an actual “Message-ID”, and is often
some sort of UUID.)

timestamp

A datetime indicating when the event was generated. (The timezone is often UTC, but the exact behavior
depends on your ESP and account settings. Anymail ensures that this value is an aware datetime with an
accurate timezone.)

event_id

A str unique identifier for the event, if available; otherwise None. Can be used to avoid processing the
same event twice. Exact format varies by ESP, and not all ESPs provide an event_id for all event types.

recipient

The str email address of the recipient. (Just the “recipient@example.com” portion.)

metadata

A dict of unique data attached to the message. Will be empty if the ESP doesn’t provide metadata with
its tracking events. (See AnymailMessage.metadata.)

tags

A list of str tags attached to the message. Will be empty if the ESP doesn’t provide tags with its tracking
events. (See AnymailMessage.tags.)

24 Chapter 1. Documentation

https://docs.python.org/3.10/library/stdtypes.html#str
https://docs.python.org/3.10/library/datetime.html#datetime.datetime
https://docs.python.org/3.10/library/stdtypes.html#str
https://docs.python.org/3.10/library/constants.html#None
https://docs.python.org/3.10/library/stdtypes.html#str
https://docs.python.org/3.10/library/stdtypes.html#dict
https://docs.python.org/3.10/library/stdtypes.html#list
https://docs.python.org/3.10/library/stdtypes.html#str

Anymail Documentation, Release 10.1

reject_reason

For 'bounced' and 'rejected' events, a normalized str giving the reason for the bounce/rejection.
Otherwise None. One of:

• 'invalid': bad email address format.

• 'bounced': bounced recipient. (In a 'rejected' event, indicates the recipient is on your ESP’s
prior-bounces suppression list.)

• 'timed_out': your ESP is giving up after repeated transient delivery failures (which may have shown
up as 'deferred' events).

• 'blocked': your ESP’s policy prohibits this recipient.

• 'spam': the receiving MTA or recipient determined the message is spam. (In a 'rejected' event,
indicates the recipient is on your ESP’s prior-spam-complaints suppression list.)

• 'unsubscribed': the recipient is in your ESP’s unsubscribed suppression list.

• 'other': some other reject reason; examine the raw esp_event.

• None: Anymail isn’t able to normalize a reject/bounce reason for this ESP.

Note: Not all ESPs provide all reject reasons, and this area is often under-documented by the ESP. Anymail
does its best to interpret the ESP event, but you may find that it will report 'timed_out' for one ESP, and
'bounced' for another, sending to the same non-existent mailbox.

We appreciate bug reports with the raw esp_event data in cases where Anymail is getting it wrong.

description

If available, a str with a (usually) human-readable description of the event. Otherwise None. For example,
might explain why an email has bounced. Exact format varies by ESP (and sometimes event type).

mta_response

If available, a str with a raw (intended for email administrators) response from the receiving mail transfer
agent. Otherwise None. Often includes SMTP response codes, but the exact format varies by ESP (and
sometimes receiving MTA).

user_agent

For 'opened' and 'clicked' events, a str identifying the browser and/or email client the user is using,
if available. Otherwise None.

click_url

For 'clicked' events, the str url the user clicked. Otherwise None.

esp_event

The “raw” event data from the ESP, deserialized into a Python data structure. For most ESPs this is either
parsed JSON (as a dict), or HTTP POST fields (as a Django QueryDict).

This gives you (non-portable) access to additional information provided by your ESP. For example, some
ESPs include geo-IP location information with open and click events.

1.3. Sending email 25

https://docs.python.org/3.10/library/stdtypes.html#str
https://docs.python.org/3.10/library/constants.html#None
https://docs.python.org/3.10/library/constants.html#None
https://docs.python.org/3.10/library/stdtypes.html#str
https://docs.python.org/3.10/library/constants.html#None
https://docs.python.org/3.10/library/stdtypes.html#str
https://docs.python.org/3.10/library/constants.html#None
https://docs.python.org/3.10/library/stdtypes.html#str
https://docs.python.org/3.10/library/constants.html#None
https://docs.python.org/3.10/library/stdtypes.html#str
https://docs.python.org/3.10/library/constants.html#None
https://docs.python.org/3.10/library/stdtypes.html#dict
https://docs.djangoproject.com/en/stable/ref/request-response/#django.http.QueryDict

Anymail Documentation, Release 10.1

Signal receiver functions

Your Anymail signal receiver must be a function with this signature:

def my_handler(sender, event, esp_name, **kwargs):

(You can name it anything you want.)

Parameters
• sender (class) – The source of the event. (One of the anymail.webhook.* View classes,

but you generally won’t examine this parameter; it’s required by Django’s signal mechanism.)

• event (AnymailTrackingEvent) – The normalized tracking event. Almost anything you’d
be interested in will be in here.

• esp_name (str) – e.g., “SendGrid” or “Postmark”. If you are working with multiple ESPs,
you can use this to distinguish ESP-specific handling in your shared event processing.

• **kwargs – Required by Django’s signal mechanism (to support future extensions).

Returns nothing

Raises any exceptions in your signal receiver will result in a 400 HTTP error to the webhook. See
discussion below.

If any of your signal receivers raise an exception, Anymail will discontinue processing the current batch of events and
return an HTTP 400 error to the ESP. Most ESPs respond to this by re-sending the event(s) later, a limited number of
times.

This is the desired behavior for transient problems (e.g., your Django database being unavailable), but can cause con-
fusion in other error cases. You may want to catch some (or all) exceptions in your signal receiver, log the problem for
later follow up, and allow Anymail to return the normal 200 success response to your ESP.

Some ESPs impose strict time limits on webhooks, and will consider them failed if they don’t respond within (say)
five seconds. And will retry sending the “failed” events, which could cause duplicate processing in your code. If your
signal receiver code might be slow, you should instead queue the event for later, asynchronous processing (e.g., using
something like celery).

If your signal receiver function is defined within some other function or instance method, you must use the weak=False
option when connecting it. Otherwise, it might seem to work at first, but will unpredictably stop being called at some
point—typically on your production server, in a hard-to-debug way. See Django’s listening to signals docs for more
information.

1.3.5 Pre- and post-send signals

Anymail provides pre-send and post-send signals you can connect to trigger actions whenever messages are sent through
an Anymail backend.

Be sure to read Django’s listening to signals docs for information on defining and connecting signal receivers.

26 Chapter 1. Documentation

https://docs.python.org/3.10/library/stdtypes.html#str
https://pypi.org/project/celery/
https://docs.djangoproject.com/en/stable/topics/signals/#listening-to-signals
https://docs.djangoproject.com/en/stable/topics/signals/#listening-to-signals

Anymail Documentation, Release 10.1

Pre-send signal

You can use Anymail’s pre_send signal to examine or modify messages before they are sent. For example, you could
implement your own email suppression list:

from anymail.exceptions import AnymailCancelSend
from anymail.signals import pre_send
from django.dispatch import receiver
from email.utils import parseaddr

from your_app.models import EmailBlockList

@receiver(pre_send)
def filter_blocked_recipients(sender, message, **kwargs):

Cancel the entire send if the from_email is blocked:
if not ok_to_send(message.from_email):

raise AnymailCancelSend("Blocked from_email")
Otherwise filter the recipients before sending:
message.to = [addr for addr in message.to if ok_to_send(addr)]
message.cc = [addr for addr in message.cc if ok_to_send(addr)]

def ok_to_send(addr):
This assumes you've implemented an EmailBlockList model
that holds emails you want to reject...
name, email = parseaddr(addr) # just want the <email> part
try:

EmailBlockList.objects.get(email=email)
return False # in the blocklist, so *not* OK to send

except EmailBlockList.DoesNotExist:
return True # *not* in the blocklist, so OK to send

Any changes you make to the message in your pre-send signal receiver will be reflected in the ESP send API call, as
shown for the filtered “to” and “cc” lists above. Note that this will modify the original EmailMessage (not a copy)—be
sure this won’t confuse your sending code that created the message.

If you want to cancel the message altogether, your pre-send receiver function can raise an AnymailCancelSend ex-
ception, as shown for the “from_email” above. This will silently cancel the send without raising any other errors.

anymail.signals.pre_send

Signal delivered before each EmailMessage is sent.

Your pre_send receiver must be a function with this signature:

def my_pre_send_handler(sender, message, esp_name, **kwargs):

(You can name it anything you want.)

Parameters
• sender (class) – The Anymail backend class processing the message. This parameter is

required by Django’s signal mechanism, and despite the name has nothing to do with the
email message’s sender. (You generally won’t need to examine this parameter.)

• message (EmailMessage) – The message being sent. If your receiver modifies the mes-
sage, those changes will be reflected in the ESP send call.

• esp_name (str) – The name of the ESP backend in use (e.g., “SendGrid” or “Mailgun”).

1.3. Sending email 27

https://docs.djangoproject.com/en/stable/topics/email/#django.core.mail.EmailMessage
https://docs.python.org/3.10/library/stdtypes.html#str

Anymail Documentation, Release 10.1

• **kwargs – Required by Django’s signal mechanism (to support future extensions).

Raises anymail.exceptions.AnymailCancelSend if your receiver wants to cancel this mes-
sage without causing errors or interrupting a batch send.

Post-send signal

You can use Anymail’s post_send signal to examine messages after they are sent. This is useful to centralize handling
of the sent status for all messages.

For example, you could implement your own ESP logging dashboard (perhaps combined with Anymail’s event-tracking
webhooks):

from anymail.signals import post_send
from django.dispatch import receiver

from your_app.models import SentMessage

@receiver(post_send)
def log_sent_message(sender, message, status, esp_name, **kwargs):

This assumes you've implemented a SentMessage model for tracking sends.
status.recipients is a dict of email: status for each recipient
for email, recipient_status in status.recipients.items():

SentMessage.objects.create(
esp=esp_name,
message_id=recipient_status.message_id, # might be None if send failed
email=email,
subject=message.subject,
status=recipient_status.status, # 'sent' or 'rejected' or ...

)

anymail.signals.post_send

Signal delivered after each EmailMessage is sent.

If you register multiple post-send receivers, Anymail will ensure that all of them are called, even if one raises an
error.

Your post_send receiver must be a function with this signature:

def my_post_send_handler(sender, message, status, esp_name, **kwargs):

(You can name it anything you want.)

Parameters
• sender (class) – The Anymail backend class processing the message. This parameter is

required by Django’s signal mechanism, and despite the name has nothing to do with the
email message’s sender. (You generally won’t need to examine this parameter.)

• message (EmailMessage) – The message that was sent. You should not modify this in a
post-send receiver.

• status (AnymailStatus) – The normalized response from the ESP send call. (Also avail-
able as message.anymail_status.)

• esp_name (str) – The name of the ESP backend in use (e.g., “SendGrid” or “Mailgun”).

• **kwargs – Required by Django’s signal mechanism (to support future extensions).

28 Chapter 1. Documentation

https://docs.djangoproject.com/en/stable/topics/email/#django.core.mail.EmailMessage
https://docs.python.org/3.10/library/stdtypes.html#str

Anymail Documentation, Release 10.1

1.3.6 Exceptions

exception anymail.exceptions.AnymailUnsupportedFeature

If the email tries to use features that aren’t supported by the ESP, the send call will raise an
AnymailUnsupportedFeature error, and the message won’t be sent. See Unsupported features.

You can disable this exception (ignoring the unsupported features and sending the message anyway, without
them) by setting ANYMAIL_IGNORE_UNSUPPORTED_FEATURES to True.

exception anymail.exceptions.AnymailRecipientsRefused

Raised when all recipients (to, cc, bcc) of a message are invalid or rejected by your ESP at send time. See Refused
recipients.

You can disable this exception by setting ANYMAIL_IGNORE_RECIPIENT_STATUS to True in your settings.py,
which will cause Anymail to treat any non-AnymailAPIError response from your ESP as a successful send.

exception anymail.exceptions.AnymailAPIError

If the ESP’s API fails or returns an error response, the send call will raise an AnymailAPIError.

The exception’s status_code and response attributes may help explain what went wrong. (Tip: you may also
be able to check the API log in your ESP’s dashboard. See Troubleshooting.)

In production, it’s not unusual for sends to occasionally fail due to transient connectivity problems, ESP main-
tenance, or other operational issues. Typically these failures have a 5xx status_code. See Handling transient
errors for suggestions on retrying these failed sends.

exception anymail.exceptions.AnymailInvalidAddress

The send call will raise a AnymailInvalidAddress error if you attempt to send a message with invalidly-
formatted email addresses in the from_email or recipient lists.

One source of this error can be using a display-name (“real name”) containing commas or parentheses. Per RFC
5322, you should use double quotes around the display-name portion of an email address:

won't work:
send_mail(from_email='Widgets, Inc. <widgets@example.com>', ...)
must use double quotes around display-name containing comma:
send_mail(from_email='"Widgets, Inc." <widgets@example.com>', ...)

exception anymail.exceptions.AnymailSerializationError

The send call will raise a AnymailSerializationError if there are message attributes Anymail doesn’t know
how to represent to your ESP.

The most common cause of this error is including values other than strings and numbers in your merge_data or
metadata. (E.g., you need to format Decimal and date data to strings before setting them into merge_data.)

See Formatting merge data for more information.

1.4 Receiving mail

For ESPs that support receiving inbound email, Anymail offers normalized handling of inbound events.

If you didn’t set up webhooks when first installing Anymail, you’ll need to configure webhooks to get started with
inbound email. (You should also review Securing webhooks.)

Once you’ve enabled webhooks, Anymail will send a anymail.signals.inbound custom Django signal for each ESP
inbound message it receives. You can connect your own receiver function to this signal for further processing. (This

1.4. Receiving mail 29

https://docs.python.org/3.10/library/constants.html#True
https://docs.python.org/3.10/library/constants.html#True
https://datatracker.ietf.org/doc/html/rfc5322.html
https://datatracker.ietf.org/doc/html/rfc5322.html
https://docs.djangoproject.com/en/stable/topics/signals/

Anymail Documentation, Release 10.1

is very much like how Anymail handles status tracking events for sent messages. Inbound events just use a different
signal receiver and have different event parameters.)

Be sure to read Django’s listening to signals docs for information on defining and connecting signal receivers.

Example:

from anymail.signals import inbound
from django.dispatch import receiver

@receiver(inbound) # add weak=False if inside some other function/class
def handle_inbound(sender, event, esp_name, **kwargs):

message = event.message
print("Received message from %s (envelope sender %s) with subject '%s'" % (

message.from_email, message.envelope_sender, message.subject))

Some ESPs batch up multiple inbound messages into a single webhook call. Anymail will invoke your signal receiver
once, separately, for each message in the batch.

Warning: Be careful with inbound email
Inbound email is user-supplied content. There are all kinds of ways a malicious sender can abuse the email format
to give your app misleading or dangerous data. Treat inbound email content with the same suspicion you’d apply
to any user-submitted data. Among other concerns:

• Senders can spoof the From header. An inbound message’s from_email may or may not match the actual
address that sent the message. (There are both legitimate and malicious uses for this capability.)

• Most other fields in email can be falsified. E.g., an inbound message’s datemay or may not accurately reflect
when the message was sent.

• Inbound attachments have the same security concerns as user-uploaded files. If you process inbound attach-
ments, you’ll need to verify that the attachment content is valid.

This is particularly important if you publish the attachment content through your app. For example, an “im-
age” attachment could actually contain an executable file or raw HTML. You wouldn’t want to serve that as
a user’s avatar.

It’s not sufficient to check the attachment’s content-type or filename extension—senders can falsify both of
those. Consider using python-magic or a similar approach to validate the actual attachment content.

The Django docs have additional notes on user-supplied content security.

1.4.1 Normalized inbound event

class anymail.signals.AnymailInboundEvent

The event parameter to Anymail’s inbound signal receiver is an object with the following attributes:

message

An AnymailInboundMessage representing the email that was received. Most of what you’re interested in
will be on this message attribute. See the full details below.

event_type

A normalized str identifying the type of event. For inbound events, this is always 'inbound'.

30 Chapter 1. Documentation

https://docs.djangoproject.com/en/stable/topics/signals/
https://blog.hayleyanderson.us/2015/07/18/validating-file-types-in-django/
https://docs.djangoproject.com/en/stable/topics/security/#user-uploaded-content-security
https://docs.python.org/3.10/library/stdtypes.html#str

Anymail Documentation, Release 10.1

timestamp

A datetime indicating when the inbound event was generated by the ESP, if available; otherwise None.
(Very few ESPs provide this info.)

This is typically when the ESP received the message or shortly thereafter. (Use event.message.date if
you’re interested in when the message was sent.)

(The timestamp’s timezone is often UTC, but the exact behavior depends on your ESP and account settings.
Anymail ensures that this value is an aware datetime with an accurate timezone.)

event_id

A str unique identifier for the event, if available; otherwise None. Can be used to avoid processing the
same event twice. The exact format varies by ESP, and very few ESPs provide an event_id for inbound
messages.

An alternative approach to avoiding duplicate processing is to use the inbound message’s Message-ID
header (event.message['Message-ID']).

esp_event

The “raw” event data from the ESP, deserialized into a python data structure. For most ESPs this is either
parsed JSON (as a dict), or sometimes the complete Django HttpRequest received by the webhook.

This gives you (non-portable) access to original event provided by your ESP, which can be helpful if you
need to access data Anymail doesn’t normalize.

1.4.2 Normalized inbound message

class anymail.inbound.AnymailInboundMessage

The message attribute of an AnymailInboundEvent is an AnymailInboundMessage—an extension of Python’s
standard email.message.EmailMessage with additional features to simplify inbound handling.

Changed in version 10.1: Earlier releases extended Python’s legacy email.message.Message class.
EmailMessage is a superset that fixes bugs and improves compatibility with email standards.

In addition to the base EmailMessage functionality, AnymailInboundMessage includes these attributes:

envelope_sender

The actual sending address of the inbound message, as determined by your ESP. This is a str “addr-
spec”—just the email address portion without any display name ("sender@example.com")—or None if
the ESP didn’t provide a value.

The envelope sender often won’t match the message’s From header—for example, messages sent on some-
one’s behalf (mailing lists, invitations) or when a spammer deliberately falsifies the From address.

envelope_recipient

The actual destination address the inbound message was delivered to. This is a str “addr-spec”—just
the email address portion without any display name ("recipient@example.com")—or None if the ESP
didn’t provide a value.

The envelope recipient may not appear in the To or Cc recipient lists—for example, if your inbound address
is bcc’d on a message.

from_email

The value of the message’s From header. Anymail converts this to an EmailAddress object, which makes
it easier to access the parsed address fields:

1.4. Receiving mail 31

https://docs.python.org/3.10/library/datetime.html#datetime.datetime
https://docs.python.org/3.10/library/constants.html#None
https://docs.python.org/3.10/library/stdtypes.html#str
https://docs.python.org/3.10/library/constants.html#None
https://docs.python.org/3.10/library/stdtypes.html#dict
https://docs.djangoproject.com/en/stable/ref/request-response/#django.http.HttpRequest
https://docs.python.org/3.10/library/email.message.html#email.message.EmailMessage
https://docs.python.org/3.10/library/email.compat32-message.html#email.message.Message
https://docs.python.org/3.10/library/email.message.html#email.message.EmailMessage
https://docs.python.org/3.10/library/email.message.html#email.message.EmailMessage
https://docs.python.org/3.10/library/stdtypes.html#str
https://docs.python.org/3.10/library/constants.html#None
https://docs.python.org/3.10/library/stdtypes.html#str
https://docs.python.org/3.10/library/constants.html#None

Anymail Documentation, Release 10.1

>>> str(message.from_email) # the fully-formatted address
'"Dr. Justin Customer, CPA" <jcustomer@example.com>'
>>> message.from_email.addr_spec # the "email" portion of the address
'jcustomer@example.com'
>>> message.from_email.display_name # empty string if no display name
'Dr. Justin Customer, CPA'
>>> message.from_email.domain
'example.com'
>>> message.from_email.username
'jcustomer'

(This API is borrowed from Python 3.6’s email.headerregistry.Address.)

If the message has an invalid or missing From header, this property will be None. Note that From headers
can be misleading; see envelope_sender.

to

A list of of parsed EmailAddress objects from the To header, or an empty list if that header is missing
or invalid. Each address in the list has the same properties as shown above for from_email.

See envelope_recipient if you need to know the actual inbound address that received the inbound
message.

cc

A list of of parsed EmailAddress objects, like to, but from the Cc headers.

subject

The value of the message’s Subject header, as a str, or None if there is no Subject header.

date

The value of the message’s Date header, as a datetime object, or None if the Date header is missing or
invalid. This attribute will almost always be an aware datetime (with a timezone); in rare cases it can be
naive if the sending mailer indicated that it had no timezone information available.

The Date header is the sender’s claim about when it sent the message, which isn’t necessarily accurate.
(If you need to know when the message was received at your ESP, that might be available in event.
timestamp. If not, you’d need to parse the messages’s Received headers, which can be non-trivial.)

text

The message’s plaintext message body as a str, or None if the message doesn’t include a plaintext body.

For certain messages that are sent as plaintext with inline images (such as those sometimes composed by
the Apple Mail app), this will include only the text before the first inline image.

html

The message’s HTML message body as a str, or None if the message doesn’t include an HTML body.

attachments

A list of all attachments to the message, or an empty list if there are no attachments. See Attached and
inline content below a description of the values.

If the inbound message includes an attached message, attachments will include the attached message and
all of its attachments, recursively. Consider Python’s iter_attachments() as an alternative that doesn’t
descend into attached messages.

inlines

A list of all inline content parts in the message, or an empty list if none. See Attached and inline content
below for a description of the values.

32 Chapter 1. Documentation

https://docs.python.org/3.10/library/email.headerregistry.html#email.headerregistry.Address
https://docs.python.org/3.10/library/constants.html#None
https://docs.python.org/3.10/library/stdtypes.html#list
https://docs.python.org/3.10/library/stdtypes.html#list
https://docs.python.org/3.10/library/stdtypes.html#str
https://docs.python.org/3.10/library/constants.html#None
https://docs.python.org/3.10/library/datetime.html#datetime.datetime
https://docs.python.org/3.10/library/constants.html#None
https://docs.python.org/3.10/library/stdtypes.html#str
https://docs.python.org/3.10/library/constants.html#None
https://docs.python.org/3.10/library/stdtypes.html#str
https://docs.python.org/3.10/library/constants.html#None
https://docs.python.org/3.10/library/stdtypes.html#list
https://docs.python.org/3.10/library/email.message.html#email.message.EmailMessage.iter_attachments
https://docs.python.org/3.10/library/stdtypes.html#list

Anymail Documentation, Release 10.1

Like attachments, this will recursively descend into any attached messages.

New in version 10.1.

content_id_map

A dict mapping inline Content-ID references to inline content. Each key is an “unquoted” cid without
angle brackets. E.g., if the html body contains , you could get that inline
image using message.content_id_map["abc123..."].

The value of each item is described in Attached and inline content below.

New in version 10.1: This property was previously available as inline_attachments. The old name still
works, but is deprecated.

spam_score

A float spam score (usually from SpamAssassin) if your ESP provides it; otherwise None. The range
of values varies by ESP and spam-filtering configuration, so you may need to experiment to find a useful
threshold.

spam_detected

If your ESP provides a simple yes/no spam determination, a bool indicating whether the ESP thinks the
inbound message is probably spam. Otherwise None. (Most ESPs just assign a spam_score and leave its
interpretation up to you.)

stripped_text

If provided by your ESP, a simplified version the inbound message’s plaintext body; otherwise None.

What exactly gets “stripped” varies by ESP, but it often omits quoted replies and sometimes signature
blocks. (And ESPs who do offer stripped bodies usually consider the feature experimental.)

stripped_html

Like stripped_text, but for the HTML body. (Very few ESPs support this.)

Other headers, complex messages, etc.

You can use all of Python’s email.message.EmailMessage features with an AnymailInboundMessage. For
example, you can access message headers using EmailMessage’s mapping interface:

message['reply-to'] # the Reply-To header (header keys are case-insensitive)
message.getall('DKIM-Signature') # list of all DKIM-Signature headers

And you can use Message methods like walk() and get_content_type() to examine more-complex multipart
MIME messages (digests, delivery reports, or whatever).

1.4.3 Attached and inline content

Anymail converts each inbound attachment and inline content to a specialized MIME object with additional methods
for handling attachments and integrating with Django.

The objects in an AnymailInboundMessage’s attachments, inlines, and content_id_map have these methods:

class AnymailInboundMessage

as_uploaded_file()

Returns the content converted to a Django UploadedFile object. This is suitable for assigning to a model’s
FileField or ImageField:

1.4. Receiving mail 33

https://docs.python.org/3.10/library/stdtypes.html#dict
https://docs.python.org/3.10/library/functions.html#float
https://docs.python.org/3.10/library/constants.html#None
https://docs.python.org/3.10/library/functions.html#bool
https://docs.python.org/3.10/library/constants.html#None
https://docs.python.org/3.10/library/constants.html#None
https://docs.python.org/3.10/library/email.message.html#email.message.EmailMessage
https://docs.python.org/3.10/library/email.message.html#email.message.EmailMessage.__getitem__
https://docs.python.org/3.10/library/email.message.html#email.message.EmailMessage.walk
https://docs.python.org/3.10/library/email.message.html#email.message.EmailMessage.get_content_type
https://docs.djangoproject.com/en/stable/ref/files/uploads/#django.core.files.uploadedfile.UploadedFile
https://docs.djangoproject.com/en/stable/ref/models/fields/#django.db.models.FileField
https://docs.djangoproject.com/en/stable/ref/models/fields/#django.db.models.ImageField

Anymail Documentation, Release 10.1

allow users to mail in jpeg attachments to set their profile avatars...
if attachment.get_content_type() == "image/jpeg":

for security, you must verify the content is really a jpeg
(you'll need to supply the is_valid_jpeg function)
if is_valid_jpeg(attachment.get_content_bytes()):

user.profile.avatar_image = attachment.as_uploaded_file()

See Django’s docs on Managing files for more information on working with uploaded files.

get_content_type()

get_content_maintype()

get_content_subtype()

The type of attachment content, as specified by the sender. (But remember attachments are essentially
user-uploaded content, so you should never trust the sender.)

See the Python docs for more info on email.message.EmailMessage.get_content_type(),
get_content_maintype(), and get_content_subtype().

(Note that you cannot determine the attachment type using code like issubclass(attachment,
email.mime.image.MIMEImage). You should instead use something like attachment.
get_content_maintype() == 'image'. The email package’s specialized MIME subclasses are
designed for constructing new messages, and aren’t used for parsing existing, inbound email messages.)

get_filename()

The original filename of the attachment, as specified by the sender.

Never use this filename directly to write files—that would be a huge security hole. (What would your app
do if the sender gave the filename “/etc/passwd” or “../settings.py”?)

is_attachment()

Returns True for attachment content (with Content-Disposition “attachment”), False otherwise.

is_inline()

Returns True for inline content (with Content-Disposition “inline”), False otherwise.

Changed in version 10.1: This method was previously named is_inline_attachment(); the old name
still works, but is deprecated.

get_content_disposition()

Returns the lowercased value (without parameters) of the attachment’s Content-Disposition header.
The return value should be either “inline” or “attachment”, or None if the attachment is somehow missing
that header.

get_content_text(charset=None, errors='replace')
Returns the content of the attachment decoded to Unicode text. (This is generally only appropriate for text
or message-type attachments.)

If provided, charset will override the attachment’s declared charset. (This can be useful if you know the
attachment’s Content-Type has a missing or incorrect charset.)

The errors param is as in decode(). The default “replace” substitutes the Unicode “replacement character”
for any illegal characters in the text.

get_content_bytes()

Returns the raw content of the attachment as bytes. (This will automatically decode any base64-encoded
attachment data.)

34 Chapter 1. Documentation

https://docs.djangoproject.com/en/stable/topics/files/
https://docs.python.org/3.10/library/email.message.html#email.message.EmailMessage.get_content_type
https://docs.python.org/3.10/library/email.message.html#email.message.EmailMessage.get_content_maintype
https://docs.python.org/3.10/library/email.message.html#email.message.EmailMessage.get_content_subtype
https://docs.python.org/3.10/library/constants.html#True
https://docs.python.org/3.10/library/constants.html#False
https://docs.python.org/3.10/library/constants.html#True
https://docs.python.org/3.10/library/constants.html#False
https://docs.python.org/3.10/library/constants.html#None
https://docs.python.org/3.10/library/stdtypes.html#bytes.decode

Anymail Documentation, Release 10.1

Complex attachments

An Anymail inbound attachment is actually just an AnymailInboundMessage instance, following the Python
email package’s usual recursive representation of MIME messages. All AnymailInboundMessage and email.
message.EmailMessage functionality is available on attachment objects (though of course not all features are
meaningful in all contexts).

This can be helpful for, e.g., parsing email messages that are forwarded as attachments to an inbound message.

Anymail loads all attachment content into memory as it processes each inbound message. This may limit the size of
attachments your app can handle, beyond any attachment size limits imposed by your ESP. Depending on how your ESP
transmits attachments, you may also need to adjust Django’s DATA_UPLOAD_MAX_MEMORY_SIZE setting to successfully
receive larger attachments.

1.4.4 Inbound signal receiver functions

Your Anymail inbound signal receiver must be a function with this signature:

def my_handler(sender, event, esp_name, **kwargs):

(You can name it anything you want.)

Parameters
• sender (class) – The source of the event. (One of the anymail.webhook.* View classes,

but you generally won’t examine this parameter; it’s required by Django’s signal mechanism.)

• event (AnymailInboundEvent) – The normalized inbound event. Almost anything you’d
be interested in will be in here—usually in the AnymailInboundMessage found in event.
message.

• esp_name (str) – e.g., “SendMail” or “Postmark”. If you are working with multiple ESPs,
you can use this to distinguish ESP-specific handling in your shared event processing.

• **kwargs – Required by Django’s signal mechanism (to support future extensions).

Returns nothing

Raises any exceptions in your signal receiver will result in a 400 HTTP error to the webhook. See
discussion below.

If (any of) your signal receivers raise an exception, Anymail will discontinue processing the current batch of events and
return an HTTP 400 error to the ESP. Most ESPs respond to this by re-sending the event(s) later, a limited number of
times.

This is the desired behavior for transient problems (e.g., your Django database being unavailable), but can cause con-
fusion in other error cases. You may want to catch some (or all) exceptions in your signal receiver, log the problem for
later follow up, and allow Anymail to return the normal 200 success response to your ESP.

Some ESPs impose strict time limits on webhooks, and will consider them failed if they don’t respond within (say) five
seconds. And they may then retry sending these “failed” events, which could cause duplicate processing in your code.
If your signal receiver code might be slow, you should instead queue the event for later, asynchronous processing (e.g.,
using something like celery).

If your signal receiver function is defined within some other function or instance method, you must use the weak=False
option when connecting it. Otherwise, it might seem to work at first, but will unpredictably stop being called at some
point—typically on your production server, in a hard-to-debug way. See Django’s docs on signals for more information.

1.4. Receiving mail 35

https://docs.python.org/3.10/library/email.message.html#email.message.EmailMessage
https://docs.python.org/3.10/library/email.message.html#email.message.EmailMessage
https://docs.djangoproject.com/en/stable/ref/settings/#std-setting-DATA_UPLOAD_MAX_MEMORY_SIZE
https://docs.python.org/3.10/library/stdtypes.html#str
https://pypi.org/project/celery/
https://docs.djangoproject.com/en/stable/topics/signals/

Anymail Documentation, Release 10.1

1.5 Supported ESPs

Anymail currently supports these Email Service Providers. Click an ESP’s name for specific Anymail settings required,
and notes about any quirks or limitations:

1.5.1 Amazon SES

Anymail integrates with the Amazon Simple Email Service (SES) using the Boto 3 AWS SDK for Python, and supports
sending, tracking, and inbound receiving capabilities.

Changed in version 10.0.

Note: AWS has two versions of the SES API available for sending email. Anymail 10.0 uses the newer SES v2 API
by default, and this is recommended for new projects.

If you integrated Amazon SES using an earlier Anymail release, you may need to update your IAM permissions. See
Migrating to the SES v2 API below. Or if you are not ready to switch, see Using SES v1 (deprecated) below.

Alternatives

At least two other packages offer Django integration with Amazon SES: django-amazon-ses and django-ses. De-
pending on your needs, one of them may be more appropriate than Anymail.

Installation

You must ensure the boto3 package is installed to use Anymail’s Amazon SES backend. Either include the amazon-ses
option when you install Anymail:

$ pip install "django-anymail[amazon-ses]"

or separately run pip install boto3.

Changed in version 10.0: In earlier releases, the “extra name” could use an underscore
(django-anymail[amazon_ses]). That now causes pip to warn that “django-anymail does not provide the
extra ‘amazon_ses’,” and may result in a broken installation that is missing boto3.

To send mail with Anymail’s Amazon SES backend, set:

EMAIL_BACKEND = "anymail.backends.amazon_ses.EmailBackend"

in your settings.py.

In addition, you must make sure boto3 is configured with AWS credentials having the necessary IAM permissions.
There are several ways to do this; see Credentials in the Boto docs for options. Usually, an IAM role for EC2 instances,
standard Boto environment variables, or a shared AWS credentials file will be appropriate. For more complex cases,
use Anymail’s AMAZON_SES_CLIENT_PARAMS setting to customize the Boto session.

36 Chapter 1. Documentation

https://aws.amazon.com/ses/
https://boto3.readthedocs.io/en/stable/
https://pypi.org/project/django-amazon-ses/
https://pypi.org/project/django-ses/
https://pypi.org/project/boto3/
https://boto3.readthedocs.io/en/stable/guide/configuration.html#configuring-credentials

Anymail Documentation, Release 10.1

Migrating to the SES v2 API

Changed in version 10.0.

Anymail 10.0 uses Amazon’s updated SES v2 API to send email. Earlier Anymail releases used the original Ama-
zon SES API (v1) by default. Although the capabilities of the two SES versions are virtually identical, Amazon is
implementing improvements (such as increased maximum message size) only in the v2 API.

(The upgrade for SES v2 affects only sending email. There are no changes required for status tracking webhooks or
receiving inbound email.)

Migrating to SES v2 requires minimal code changes:

1. Update your IAM permissions to grant Anymail access to the SES v2 sending actions: ses:SendEmail for
ordinary sends, and/or ses:SendBulkEmail to send using SES templates. (The IAM action prefix is just ses
for both the v1 and v2 APIs.)

If you run into unexpected IAM authorization failures, see the note about misleading IAM permissions errors
below.

2. If your code uses Anymail’s esp_extra to pass additional SES API parameters, or examines the raw
esp_response after sending a message, you may need to update it for the v2 API. Many parameters have dif-
ferent names in the v2 API compared to the equivalent v1 calls, and the response formats are slightly different.

Among v1 parameters commonly used, ConfigurationSetName is unchanged in v2, but v1’s Tags and most
*Arn parameters have been renamed in v2. See AWS’s docs for SES v1 SendRawEmail vs. v2 SendEmail, or if
you are sending with SES templates, compare v1 SendBulkTemplatedEmail to v2 SendBulkEmail.

Using SES v1 (deprecated)

New projects should use Anymail’s default Amazon SES v2 integration. If you have an existing project that is not ready
to switch to v2, Anymail’s original SES v1 support is still available. In your settings.py, change the EMAIL_BACKEND
from:

EMAIL_BACKEND = "anymail.backends.amazon_ses.EmailBackend" # default SES v2

to this:

EMAIL_BACKEND = "anymail.backends.amazon_sesv1.EmailBackend" # SES v1
^^

Note that SES v1 support is deprecated and will be removed in a future Anymail release (likely in late 2023).

Limitations and quirks

Hard throttling Like most ESPs, Amazon SES throttles sending for new customers. But unlike most ESPs, SES does
not queue and slowly release throttled messages. Instead, it hard-fails the send API call. A strategy for retrying
errors is required with any ESP; you’re likely to run into it right away with Amazon SES.

Tags limitations Amazon SES’s handling for tags is a bit different from other ESPs. Anymail tries to provide a useful,
portable default behavior for its tags feature. See Tags and metadata below for more information and additional
options.

No merge_metadata Amazon SES’s batch sending API does not support the custom headers Anymail uses for meta-
data, so Anymail’s merge_metadata feature is not available. (See Tags and metadata below for more informa-
tion.)

1.5. Supported ESPs 37

https://docs.aws.amazon.com/ses/latest/APIReference/API_SendRawEmail.html
https://docs.aws.amazon.com/ses/latest/APIReference-V2/API_SendEmail.html
https://docs.aws.amazon.com/ses/latest/APIReference/API_SendBulkTemplatedEmail.html
https://docs.aws.amazon.com/ses/latest/APIReference-V2/API_SendBulkEmail.html
https://docs.aws.amazon.com/ses/latest/DeveloperGuide/manage-sending-limits.html

Anymail Documentation, Release 10.1

Open and click tracking overrides Anymail’s track_opens and track_clicks are not supported. Although Ama-
zon SES does support open and click tracking, it doesn’t offer a simple mechanism to override the settings for in-
dividual messages. If you need this feature, provide a custom ConfigurationSetName in Anymail’s esp_extra.

No delayed sending Amazon SES does not support send_at.

No global send defaults for non-Anymail options With the Amazon SES backend, Anymail’s global send defaults
are only supported for Anymail’s added message options (like metadata and esp_extra), not for standard
EmailMessage attributes like bcc or from_email.

Arbitrary alternative parts allowed Amazon SES is one of the few ESPs that does support sending arbitrary alter-
native message parts (beyond just a single text/plain and text/html part).

AMP for Email Amazon SES supports sending AMPHTML email content. To include it, use message.
attach_alternative("...AMPHTML content...", "text/x-amp-html") (and be sure to also include
regular HTML and text bodies, too).

Envelope-sender is forwarded Anymail’s envelope_sender becomes Amazon SES’s
FeedbackForwardingEmailAddress. That address will receive bounce and other delivery notifica-
tions, but will not appear in the message sent to the recipient. SES always generates its own anonymized
envelope sender (mailfrom) for each outgoing message, and then forwards that address to your envelope-sender.
See Email feedback forwarding destination in the SES docs.

Spoofed To header allowed Amazon SES is one of the few ESPs that supports spoofing the To header (see Additional
headers). (But be aware that most ISPs consider this a strong spam signal, and using it will likely prevent delivery
of your email.)

Template limitations Messages sent with templates have a number of additional limitations, such as not supporting
attachments. See Batch sending/merge and ESP templates below.

Tags and metadata

Amazon SES provides two mechanisms for associating additional data with sent messages, which Anymail uses to
implement its tags and metadata features:

• SES Message Tags can be used for filtering or segmenting CloudWatch metrics and dashboards, and are available
to Kinesis Firehose streams. (See “How do message tags work?” in the Amazon blog post Introducing Sending
Metrics.)

By default, Anymail does not use SES Message Tags. They have strict limitations on characters allowed, and are
not consistently available to tracking webhooks. (They may be included in SES Event Publishing but not SES
Notifications.)

• Custom Email Headers are available to all SNS notifications (webhooks), but not to CloudWatch or Kinesis.

These are ordinary extension headers included in the sent message (and visible to recipients who view the full
headers). There are no restrictions on characters allowed.

By default, Anymail uses only custom email headers. A message’s metadata is sent JSON-encoded in a custom
X-Metadata header, and a message’s tags are sent in custom X-Tag headers. Both are available in Anymail’s tracking
webhooks.

Because Anymail tags are often used for segmenting reports, Anymail has an option to easily send an Anymail tag as
an SES Message Tag that can be used in CloudWatch. Set the Anymail setting AMAZON_SES_MESSAGE_TAG_NAME to
the name of an SES Message Tag whose value will be the single Anymail tag on the message. For example, with this
setting:

ANYMAIL = {
...

(continues on next page)

38 Chapter 1. Documentation

https://docs.aws.amazon.com/ses/latest/dg/monitor-sending-activity-using-notifications-email.html#monitor-sending-activity-using-notifications-email-destination
https://aws.amazon.com/blogs/ses/introducing-sending-metrics/
https://aws.amazon.com/blogs/ses/introducing-sending-metrics/
https://docs.aws.amazon.com/ses/latest/DeveloperGuide/monitor-using-event-publishing.html
https://docs.aws.amazon.com/ses/latest/DeveloperGuide/monitor-sending-using-notifications.html
https://docs.aws.amazon.com/ses/latest/DeveloperGuide/monitor-sending-using-notifications.html

Anymail Documentation, Release 10.1

(continued from previous page)

"AMAZON_SES_MESSAGE_TAG_NAME": "Type",
}

this send will appear in CloudWatch with the SES Message Tag "Type": "Marketing":

message = EmailMessage(...)
message.tags = ["Marketing"]
message.send()

Anymail’s AMAZON_SES_MESSAGE_TAG_NAME setting is disabled by default. If you use it, then only a single tag is
supported, and both the tag and the name must be limited to alphanumeric, hyphen, and underscore characters.

For more complex use cases, set the SES EmailTags parameter (or DefaultEmailTags for template sends) directly in
Anymail’s esp_extra. See the example below. (Because custom headers do not work with SES’s SendBulkEmail call,
esp_extra DefaultEmailTags is the only way to attach data to SES messages also using Anymail’s template_id
and merge_data features, and merge_metadata cannot be supported.)

esp_extra support

To use Amazon SES features not directly supported by Anymail, you can set a message’s esp_extra to a dict that
will be shallow-merged into the params for the SendEmail or SendBulkEmail SES v2 API call.

Examples (for a non-template send):

message.esp_extra = {
Override AMAZON_SES_CONFIGURATION_SET_NAME for this message:
'ConfigurationSetName': 'NoOpenOrClickTrackingConfigSet',
Authorize a custom sender:
'FromEmailAddressIdentityArn': 'arn:aws:ses:us-east-

→˓1:123456789012:identity/example.com',
Set SES Message Tags (change to 'DefaultEmailTags' for template sends):
'EmailTags': [

(Names and values must be A-Z a-z 0-9 - and _ only)
{'Name': 'UserID', 'Value': str(user_id)},
{'Name': 'TestVariation', 'Value': 'Subject-Emoji-Trial-A'},

],
Set options for unsubscribe links:
'ListManagementOptions': {

'ContactListName': 'RegisteredUsers',
'TopicName': 'DailyUpdates',

},
}

(You can also set "esp_extra" in Anymail’s global send defaults to apply it to all messages.)

1.5. Supported ESPs 39

https://docs.python.org/3.10/library/stdtypes.html#dict
https://docs.aws.amazon.com/ses/latest/APIReference-V2/API_SendEmail.html
https://docs.aws.amazon.com/ses/latest/APIReference-V2/API_SendBulkEmail.html

Anymail Documentation, Release 10.1

Batch sending/merge and ESP templates

Amazon SES offers ESP stored templates and batch sending with per-recipient merge data. See Amazon’s Sending
personalized email guide for more information.

When you set a message’s template_id to the name of one of your SES templates, Anymail will use the SES v2
SendBulkEmail call to send template messages personalized with data from Anymail’s normalized merge_data and
merge_global_data message attributes.

message = EmailMessage(
from_email="shipping@example.com",
you must omit subject and body (or set to None) with Amazon SES templates
to=["alice@example.com", "Bob <bob@example.com>"]

)
message.template_id = "MyTemplateName" # Amazon SES TemplateName
message.merge_data = {

'alice@example.com': {'name': "Alice", 'order_no': "12345"},
'bob@example.com': {'name': "Bob", 'order_no': "54321"},

}
message.merge_global_data = {

'ship_date': "May 15",
}

Amazon’s templated email APIs don’t support several features available for regular email. When template_id is
used:

• Attachments and alternative parts (including AMPHTML) are not supported

• Extra headers are not supported

• Overriding the template’s subject or body is not supported

• Anymail’s metadata is not supported

• Anymail’s tags are only supported with the AMAZON_SES_MESSAGE_TAG_NAME setting; only a single tag is
allowed, and the tag is not directly available to webhooks. (See Tags and metadata above.)

Status tracking webhooks

Anymail can provide normalized status tracking notifications for messages sent through Amazon SES. SES offers two
(confusingly) similar kinds of tracking, and Anymail supports both:

• SES Notifications include delivered, bounced, and complained (spam) Anymail event_types. (Enabling these
notifications may allow you to disable SES “email feedback forwarding.”)

• SES Event Publishing also includes delivered, bounced and complained events, as well as sent, rejected, opened,
clicked, and (template rendering) failed.

Both types of tracking events are delivered to Anymail’s webhook URL through Amazon Simple Notification Service
(SNS) subscriptions.

Amazon’s naming here can be really confusing. We’ll try to be clear about “SES Notifications” vs. “SES Event
Publishing” as the two different kinds of SES tracking events. And then distinguish all of that from “SNS”—the
publish/subscribe service used to notify Anymail’s tracking webhooks about both kinds of SES tracking event.

To use Anymail’s status tracking webhooks with Amazon SES:

1. First, configure Anymail webhooks and deploy your Django project. (Deploying allows Anymail to confirm the
SNS subscription for you in step 3.)

40 Chapter 1. Documentation

https://docs.aws.amazon.com/ses/latest/DeveloperGuide/send-personalized-email-api.html
https://docs.aws.amazon.com/ses/latest/DeveloperGuide/send-personalized-email-api.html
https://docs.aws.amazon.com/ses/latest/APIReference-V2/API_SendBulkEmail.html
https://docs.aws.amazon.com/ses/latest/DeveloperGuide/monitor-sending-using-notifications.html
https://docs.aws.amazon.com/ses/latest/DeveloperGuide/monitor-using-event-publishing.html

Anymail Documentation, Release 10.1

Then in Amazon’s Simple Notification Service console:

2. Create an SNS Topic to receive Amazon SES tracking events. The exact topic name is up to you; choose some-
thing meaningful like SES_Tracking_Events.

3. Subscribe Anymail’s tracking webhook to the SNS Topic you just created. In the SNS console, click into the
topic from step 2, then click the “Create subscription” button. For protocol choose HTTPS. For endpoint enter:

https://random:random@yoursite.example.com/anymail/amazon_ses/tracking/

• random:random is an ANYMAIL_WEBHOOK_SECRET shared secret

• yoursite.example.com is your Django site

Anymail will automatically confirm the SNS subscription. (For other options, see Confirming SNS subscriptions
below.)

Finally, switch to Amazon’s Simple Email Service console:

4. If you want to use SES Notifications: Follow Amazon’s guide to configure SES notifications through SNS,
using the SNS Topic you created above. Choose any event types you want to receive. Be sure to choose “Include
original headers” if you need access to Anymail’s metadata or tags in your webhook handlers.

5. If you want to use SES Event Publishing:
a. Follow Amazon’s guide to create an SES “Configuration Set”. Name it something meaningful, like Track-

ingConfigSet.

b. Follow Amazon’s guide to add an SNS event destination for SES event publishing, using the SNS Topic
you created above. Choose any event types you want to receive.

c. Update your Anymail settings to send using this Configuration Set by default:

ANYMAIL = {
... other settings ...
Use the name from step 5a above:
"AMAZON_SES_CONFIGURATION_SET_NAME": "TrackingConfigSet",

}

Caution: The delivery, bounce, and complaint event types are available in both SES Notifications and SES Event
Publishing. If you’re using both, don’t enable the same events in both places, or you’ll receive duplicate notifications
with different event_ids.

Note that Amazon SES’s open and click tracking does not distinguish individual recipients. If you send a single message
to multiple recipients, Anymail will call your tracking handler with the “opened” or “clicked” event for every original
recipient of the message, including all to, cc and bcc addresses. (Amazon recommends avoiding multiple recipients
with SES.)

In your tracking signal receiver, the normalized AnymailTrackingEvent’s esp_event will be set to the the parsed,
top-level JSON event object from SES: either SES Notification contents or SES Event Publishing contents. (The two
formats are nearly identical.) You can use this to obtain SES Message Tags (see Tags and metadata) from SES Event
Publishing notifications:

from anymail.signals import tracking
from django.dispatch import receiver

@receiver(tracking) # add weak=False if inside some other function/class
def handle_tracking(sender, event, esp_name, **kwargs):

(continues on next page)

1.5. Supported ESPs 41

https://docs.aws.amazon.com/sns/latest/dg/CreateTopic.html
https://docs.aws.amazon.com/ses/latest/DeveloperGuide/configure-sns-notifications.html
https://docs.aws.amazon.com/ses/latest/DeveloperGuide/event-publishing-create-configuration-set.html
https://docs.aws.amazon.com/ses/latest/DeveloperGuide/event-publishing-add-event-destination-sns.html
https://docs.aws.amazon.com/ses/latest/DeveloperGuide/notification-contents.html
https://docs.aws.amazon.com/ses/latest/DeveloperGuide/event-publishing-retrieving-sns-contents.html

Anymail Documentation, Release 10.1

(continued from previous page)

if esp_name == "Amazon SES":
try:

message_tags = {
name: values[0]
for name, values in event.esp_event["mail"]["tags"].items()}

except KeyError:
message_tags = None # SES Notification (not Event Publishing) event

print("Message %s to %s event %s: Message Tags %r" % (
event.message_id, event.recipient, event.event_type, message_tags))

Anymail does not currently check SNS signature verification, because Amazon has not released a standard way to do
that in Python. Instead, Anymail relies on your WEBHOOK_SECRET to verify SNS notifications are from an authorized
source.

Note: Amazon SNS’s default policy for handling HTTPS notification failures is to retry three times, 20 seconds apart,
and then drop the notification. That means if your webhook is ever offline for more than one minute, you may miss
events.
For most uses, it probably makes sense to configure an SNS retry policy with more attempts over a longer period.
E.g., 20 retries ranging from 5 seconds minimum to 600 seconds (5 minutes) maximum delay between attempts, with
geometric backoff.

Also, SNS does not guarantee notifications will be delivered to HTTPS subscribers like Anymail webhooks. The
longest SNS will ever keep retrying is one hour total. If you need retries longer than that, or guaranteed delivery, you
may need to implement your own queuing mechanism with something like Celery or directly on Amazon Simple Queue
Service (SQS).

Inbound webhook

You can receive email through Amazon SES with Anymail’s normalized inbound handling. See Receiving email with
Amazon SES for background.

Configuring Anymail’s inbound webhook for Amazon SES is similar to installing the tracking webhook. You must use
a different SNS Topic for inbound.

To use Anymail’s inbound webhook with Amazon SES:

1. First, if you haven’t already, configure Anymail webhooks and deploy your Django project. (Deploying allows
Anymail to confirm the SNS subscription for you in step 3.)

2. Create an SNS Topic to receive Amazon SES inbound events. The exact topic name is up to you; choose some-
thing meaningful like SES_Inbound_Events. (If you are also using Anymail’s tracking events, this must be a
different SNS Topic.)

3. Subscribe Anymail’s inbound webhook to the SNS Topic you just created. In the SNS console, click into the
topic from step 2, then click the “Create subscription” button. For protocol choose HTTPS. For endpoint enter:

https://random:random@yoursite.example.com/anymail/amazon_ses/inbound/

• random:random is an ANYMAIL_WEBHOOK_SECRET shared secret

• yoursite.example.com is your Django site

Anymail will automatically confirm the SNS subscription. (For other options, see Confirming SNS subscriptions
below.)

42 Chapter 1. Documentation

https://docs.aws.amazon.com/sns/latest/dg/SendMessageToHttp.verify.signature.html
https://docs.aws.amazon.com/sns/latest/dg/DeliveryPolicies.html
https://docs.aws.amazon.com/ses/latest/DeveloperGuide/receiving-email.html
https://docs.aws.amazon.com/ses/latest/DeveloperGuide/receiving-email.html
https://docs.aws.amazon.com/sns/latest/dg/CreateTopic.html

Anymail Documentation, Release 10.1

4. Next, follow Amazon’s guide to Setting up Amazon SES email receiving. There are several steps. Come back
here when you get to “Action Options” in the last step, “Creating Receipt Rules.”

5. Anymail supports two SES receipt actions: S3 and SNS. (Both actually use SNS.) You can choose either one:
the SNS action is easier to set up, but the S3 action allows you to receive larger messages and can be more robust.
(You can change at any time, but don’t use both simultaneously.)

• For the SNS action: choose the SNS Topic you created in step 2. Anymail will handle either Base64 or
UTF-8 encoding; use Base64 if you’re not sure.

• For the S3 action: choose or create any S3 bucket that Boto will be able to read. (See IAM permissions;
don’t use a world-readable bucket!) “Object key prefix” is optional. Anymail does not currently support
the “Encrypt message” option. Finally, choose the SNS Topic you created in step 2.

Amazon SES will likely deliver a test message to your Anymail inbound handler immediately after you complete the
last step.

If you are using the S3 receipt action, note that Anymail does not delete the S3 object. You can delete it from your
code after successful processing, or set up S3 bucket policies to automatically delete older messages. In your inbound
handler, you can retrieve the S3 object key by prepending the “object key prefix” (if any) from your receipt rule to
Anymail’s event.event_id .

Amazon SNS imposes a 15 second limit on all notifications. This includes time to download the message (if you are
using the S3 receipt action) and any processing in your signal receiver. If the total takes longer, SNS will consider the
notification failed and will make several repeat attempts. To avoid problems, it’s essential any lengthy operations are
offloaded to a background task.

Amazon SNS’s default retry policy times out after one minute of failed notifications. If your webhook is ever unreach-
able for more than a minute, you may miss inbound mail. You’ll probably want to adjust your SNS topic settings to
reduce the chances of that. See the note about retry policies in the tracking webhooks discussion above.

In your inbound signal receiver, the normalized AnymailTrackingEvent’s esp_event will be set to the the parsed,
top-level JSON object described in SES Email Receiving contents.

Confirming SNS subscriptions

Amazon SNS requires HTTPS endpoints (webhooks) to confirm they actually want to subscribe to an SNS Topic. See
Sending SNS messages to HTTPS endpoints in the Amazon SNS docs for more information.

(This has nothing to do with verifying email identities in Amazon SES, and is not related to email recipients confirming
subscriptions to your content.)

Anymail will automatically handle SNS endpoint confirmation for you, for both tracking and inbound webhooks, if
both:

1. You have deployed your Django project with Anymail webhooks enabled and an Anymail WEBHOOK_SECRET set,
before subscribing the SNS Topic to the webhook URL.

Caution: If you create the SNS subscription before deploying your Django project with the webhook secret
set, confirmation will fail and you will need to re-create the subscription by entering the full URL and
webhook secret into the SNS console again.

You cannot use the SNS console’s “Request confirmation” button to re-try confirmation. (That will fail due
to an SNS console bug that sends authentication as asterisks, rather than the username:password secret you
originally entered.)

2. The SNS endpoint URL includes the correct Anymail WEBHOOK_SECRET as HTTP basic authentication. (Amazon
SNS only allows this with https urls, not plain http.)

1.5. Supported ESPs 43

https://docs.aws.amazon.com/ses/latest/DeveloperGuide/receiving-email-setting-up.html
https://docs.aws.amazon.com/ses/latest/DeveloperGuide/receiving-email-notifications-contents.html
https://docs.aws.amazon.com/sns/latest/dg/SendMessageToHttp.html
https://github.com/anymail/django-anymail/issues/194#issuecomment-665350148

Anymail Documentation, Release 10.1

Anymail requires a valid secret to ensure the subscription request is coming from you, not some other AWS user.

If you do not want Anymail to automatically confirm SNS subscriptions for its webhook URLs, set
AMAZON_SES_AUTO_CONFIRM_SNS_SUBSCRIPTIONS to False in your ANYMAIL settings.

When auto-confirmation is disabled (or if Anymail receives an unexpected confirmation request), it will raise an
AnymailWebhookValidationFailure, which should show up in your Django error logging. The error message
will include the Token you can use to manually confirm the subscription in the Amazon SNS console or through the
SNS API.

Settings

Additional Anymail settings for use with Amazon SES:

AMAZON_SES_CLIENT_PARAMS

Optional. Additional client parameters Anymail should use to create the boto3 session client. Example:

ANYMAIL = {
...
"AMAZON_SES_CLIENT_PARAMS": {

example: override normal Boto credentials specifically for Anymail
"aws_access_key_id": os.getenv("AWS_ACCESS_KEY_FOR_ANYMAIL_SES"),
"aws_secret_access_key": os.getenv("AWS_SECRET_KEY_FOR_ANYMAIL_SES"),
"region_name": "us-west-2",
override other default options
"config": {

"connect_timeout": 30,
"read_timeout": 30,

}
},

}

In most cases, it’s better to let Boto obtain its own credentials through one of its other mechanisms: an IAM role for
EC2 instances, standard AWS_ACCESS_KEY_ID, AWS_SECRET_ACCESS_KEY and AWS_SESSION_TOKEN
environment variables, or a shared AWS credentials file.

AMAZON_SES_SESSION_PARAMS

Optional. Additional session parameters Anymail should use to create the boto3 Session. Example:

ANYMAIL = {
...
"AMAZON_SES_SESSION_PARAMS": {

"profile_name": "anymail-testing",
},

}

44 Chapter 1. Documentation

https://docs.python.org/3.10/library/constants.html#False
https://boto3.readthedocs.io/en/stable/reference/core/session.html#boto3.session.Session.client
https://boto3.readthedocs.io/en/stable/reference/core/session.html#boto3.session.Session

Anymail Documentation, Release 10.1

AMAZON_SES_CONFIGURATION_SET_NAME

Optional. The name of an Amazon SES Configuration Set Anymail should use when sending messages. The default
is to send without any Configuration Set. Note that a Configuration Set is required to receive SES Event Publishing
tracking events. See Status tracking webhooks above.

You can override this for individual messages with esp_extra.

AMAZON_SES_MESSAGE_TAG_NAME

Optional, default None. The name of an Amazon SES “Message Tag” whose value is set from a message’s Anymail
tags. See Tags and metadata above.

AMAZON_SES_AUTO_CONFIRM_SNS_SUBSCRIPTIONS

Optional boolean, default True. Set to False to prevent Anymail webhooks from automatically accepting Amazon
SNS subscription confirmation requests. See Confirming SNS subscriptions above.

IAM permissions

Anymail requires IAM permissions that will allow it to use these actions:

• To send mail:

– Ordinary (non-templated) sends: ses:SendEmail

– Template/merge sends: ses:SendBulkEmail

• To automatically confirm webhook SNS subscriptions: sns:ConfirmSubscription

• For status tracking webhooks: no special permissions

• To receive inbound mail:

– With an “SNS action” receipt rule: no special permissions

– With an “S3 action” receipt rule: s3:GetObject on the S3 bucket and prefix used (or S3 Access Control
List read access for inbound messages in that bucket)

This IAM policy covers all of those:

{
"Version": "2012-10-17",
"Statement": [{
"Effect": "Allow",
"Action": ["ses:SendEmail", "ses:SendBulkEmail"],
"Resource": "*"

}, {
"Effect": "Allow",
"Action": ["sns:ConfirmSubscription"],
"Resource": ["arn:aws:sns:*:*:*"]

}, {
"Effect": "Allow",
"Action": ["s3:GetObject"],
"Resource": ["arn:aws:s3:::MY-PRIVATE-BUCKET-NAME/MY-INBOUND-PREFIX/*"]

}]
}

1.5. Supported ESPs 45

https://docs.aws.amazon.com/ses/latest/DeveloperGuide/using-configuration-sets.html
https://docs.python.org/3.10/library/constants.html#None
https://docs.python.org/3.10/library/constants.html#True
https://docs.python.org/3.10/library/constants.html#False

Anymail Documentation, Release 10.1

(To send using the deprecated amazon_sesv1 EmailBackend, you will also need to allow ses:SendRawEmail for
ordinary, non-templated sends, and/or ses:SendBulkTemplatedEmail for templated/merge sends.)

Note: Misleading IAM error messages
Permissions errors for the SES v2 API often refer to the equivalent SES v1 API name, which can be confusing. For
example, this error (emphasis added):

An error occurred (AccessDeniedException) when calling the SendEmail operation:
User 'arn:...' is not authorized to perform 'ses:SendRawEmail' on resource 'arn:...'

actually indicates problems with IAM policies for the v2 ses:SendEmail action, not the v1 ses:SendRawEmail
action. (The correct action appears as the “operation” in the first line of the error message.)

Following the principle of least privilege, you should omit permissions for any features you aren’t using, and you may
want to add additional restrictions:

• For Amazon SES sending, you can add conditions to restrict senders, recipients, times, or other properties. See
Amazon’s Controlling access to Amazon SES guide. (Be aware that the SES v2 SendBulkEmail API does not
support condition keys that restrict email addresses, and using them can cause misleading error messages. All
other SES APIs used by Anymail do support address restrictions, including the SES v2 SendEmail API used
for non-template sends.)

• For auto-confirming webhooks, you might limit the resource to SNS topics owned by your AWS account, and/or
specific topic names or patterns. E.g., "arn:aws:sns:*:0000000000000000:SES_*_Events" (replacing the
zeroes with your numeric AWS account id). See Amazon’s guide to Amazon SNS ARNs.

• For inbound S3 delivery, there are multiple ways to control S3 access and data retention. See Amazon’s Managing
access permissions to your Amazon S3 resources. (And obviously, you should never store incoming emails to a
public bucket!)

Also, you may need to grant Amazon SES (but not Anymail) permission to write to your inbound bucket. See
Amazon’s Giving permissions to Amazon SES for email receiving.

• For all operations, you can limit source IP, allowable times, user agent, and more. (Requests from Anymail will
include “django-anymail/version” along with Boto’s user-agent.) See Amazon’s guide to IAM condition context
keys.

1.5.2 Brevo

Anymail integrates with the Brevo email service (formerly Sendinblue), using their API v3. Brevo’s transactional API
does not support some basic email features, such as inline images. Be sure to review the limitations below.

Changed in version 10.1: Brevo was called “Sendinblue” until May, 2023. To avoid unnecessary code changes, Anymail
still uses the old name in code (settings, backend, webhook urls, etc.).

Important: Troubleshooting: If your Brevo messages aren’t being delivered as expected, be sure to look for events
in your Brevo logs.

Brevo detects certain types of errors only after the send API call reports the message as “queued.” These errors appear
in the logging dashboard.

46 Chapter 1. Documentation

https://docs.aws.amazon.com/IAM/latest/UserGuide/best-practices.html#grant-least-privilege
https://docs.aws.amazon.com/ses/latest/DeveloperGuide/control-user-access.html
https://docs.aws.amazon.com/sns/latest/dg/UsingIAMwithSNS.html#SNS_ARN_Format
https://docs.aws.amazon.com/AmazonS3/latest/dev/s3-access-control.html
https://docs.aws.amazon.com/AmazonS3/latest/dev/s3-access-control.html
https://docs.aws.amazon.com/ses/latest/DeveloperGuide/receiving-email-permissions.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_condition-keys.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_condition-keys.html
https://www.brevo.com/
https://developers.brevo.com/docs
https://app-smtp.brevo.com/log

Anymail Documentation, Release 10.1

Settings

EMAIL_BACKEND

To use Anymail’s Brevo backend, set:

EMAIL_BACKEND = "anymail.backends.sendinblue.EmailBackend"

in your settings.py.

SENDINBLUE_API_KEY

The API key can be retrieved from your Brevo SMTP & API settings on the “API Keys” tab (don’t try to use an SMTP
key). Required.

Make sure the version column indicates “v3.” (v2 keys don’t work with Anymail. If you don’t see a v3 key listed, use
“Create a New API Key”.)

ANYMAIL = {
...
"SENDINBLUE_API_KEY": "<your v3 API key>",

}

Anymail will also look for SENDINBLUE_API_KEY at the root of the settings file if neither
ANYMAIL["SENDINBLUE_API_KEY"] nor ANYMAIL_SENDINBLUE_API_KEY is set.

SENDINBLUE_API_URL

The base url for calling the Brevo API.

The default is SENDINBLUE_API_URL = "https://api.brevo.com/v3/" (It’s unlikely you would need to change
this.)

Changed in version 10.1: Earlier Anymail releases used https://api.sendinblue.com/v3/.

esp_extra support

To use Brevo features not directly supported by Anymail, you can set a message’s esp_extra to a dict that will be
merged into the json sent to Brevo’s smtp/email API.

For example, you could set Brevo’s batchId for use with their batched scheduled sending:

message.esp_extra = {
'batchId': '275d3289-d5cb-4768-9460-a990054b6c81', # merged into send␣

→˓params
}

(You can also set "esp_extra" in Anymail’s global send defaults to apply it to all messages.)

1.5. Supported ESPs 47

https://app.brevo.com/settings/keys/api
https://docs.python.org/3.10/library/stdtypes.html#dict
https://developers.brevo.com/reference/sendtransacemail
https://developers.brevo.com/docs/schedule-batch-sendings

Anymail Documentation, Release 10.1

Limitations and quirks

Brevo’s v3 API has several limitations. In most cases below, Anymail will raise an AnymailUnsupportedFeature
error if you try to send a message using missing features. You can override this by enabling the
ANYMAIL_IGNORE_UNSUPPORTED_FEATURES setting, and Anymail will try to limit the API request to features Brevo
can handle.

HTML body required Brevo’s API returns an error if you attempt to send a message with only a plain-text body. Be
sure to include HTML content for your messages if you are not using a template.

(Brevo does allow HTML without a plain-text body. This is generally not recommended, though, as some email
systems treat HTML-only content as a spam signal.)

Inline images Brevo’s v3 API doesn’t support inline images, at all. (Confirmed with Brevo support Feb 2018.)

If you are ignoring unsupported features, Anymail will try to send inline images as ordinary image attachments.

Attachment names must be filenames with recognized extensions Brevo determines attachment content type by as-
suming the attachment’s name is a filename, and examining that filename’s extension (e.g., “.jpg”).

Trying to send an attachment without a name, or where the name does not end in a supported filename extension,
will result in a Brevo API error. Anymail has no way to communicate an attachment’s desired content-type to
the Brevo API if the name is not set correctly.

Single Reply-To Brevo’s v3 API only supports a single Reply-To address.

If you are ignoring unsupported features and have multiple reply addresses, Anymail will use only the first one.

Metadata Anymail passes metadata to Brevo as a JSON-encoded string using their X-Mailin-custom email header.
The metadata is available in tracking webhooks.

Delayed sending New in version 9.0: Earlier versions of Anymail did not support send_at with Brevo.

No click-tracking or open-tracking options Brevo does not provide a way to control open or click tracking for indi-
vidual messages. Anymail’s track_clicks and track_opens settings are unsupported.

No envelope sender overrides Brevo does not support overriding envelope_sender on individual messages.

Batch sending/merge and ESP templates

Brevo supports ESP stored templates populated with global merge data for all recipients, but does not offer batch
sending with per-recipient merge data. Anymail’s merge_data and merge_metadata message attributes are not
supported with the Brevo backend, but you can use Anymail’s merge_global_data with Brevo templates.

To use a Brevo template, set the message’s template_id to the numeric Brevo template ID, and supply substitution
attributes using the message’s merge_global_data:

message = EmailMessage(
to=["alice@example.com"] # single recipient...
...multiple to emails would all get the same message
(and would all see each other's emails in the "to" header)

)
message.template_id = 3 # use this Brevo template
message.from_email = None # to use the template's default sender
message.merge_global_data = {

'name': "Alice",
'order_no': "12345",
'ship_date': "May 15",

}

48 Chapter 1. Documentation

Anymail Documentation, Release 10.1

Within your Brevo template body and subject, you can refer to merge variables using Django-like template syntax, like
{{ params.order_no }} or {{ params.ship_date }} for the example above. See Brevo’s guide to the Brevo
Template Language.

The message’s from_email (which defaults to your DEFAULT_FROM_EMAIL setting) will override the template’s default
sender. If you want to use the template’s sender, be sure to set from_email to None after creating the message, as
shown in the example above.

You can also override the template’s subject and reply-to address (but not body) using standard EmailMessage at-
tributes.

Caution: Sendinblue “old template language” not supported
Sendinblue once supported two different template styles: a “new” template language that uses Django-like tem-
plate syntax (with {{ param.NAME }} substitutions), and an “old” template language that used percent-delimited
%NAME% substitutions.

Anymail 7.0 and later work only with new style templates, now known as the “Brevo Template Language.”

Although unconverted old templates may appear to work with Anymail, there can be subtle bugs. In particular,
reply_to overrides and recipient display names are silently ignored when old style templates are sent with Anymail
7.0 or later. If you still have old style templates, follow Brevo’s instructions to convert each old template to the new
language.

Changed in version 7.0: Dropped support for Sendinblue old template language

Status tracking webhooks

If you are using Anymail’s normalized status tracking, add the url at Brevo’s site under Transactional > Email > Settings
> Webhook.

The “URL to call” is:

https://random:random@yoursite.example.com/anymail/sendinblue/tracking/

• random:random is an ANYMAIL_WEBHOOK_SECRET shared secret

• yoursite.example.com is your Django site

Be sure to select the checkboxes for all the event types you want to receive. (Also make sure you are in the “Trans-
actional” section of their site; Brevo has a separate set of “Campaign” webhooks, which don’t apply to messages sent
through Anymail.)

If you are interested in tracking opens, note that Brevo has both a “First opening” and an “Opened” event type, and
will generate both the first time a message is opened. Anymail normalizes both of these events to “opened.” To avoid
double counting, you should only enable one of the two.

Brevo will report these Anymail event_types: queued, rejected, bounced, deferred, delivered, opened (see note
above), clicked, complained, unsubscribed, subscribed (though this should never occur for transactional email).

For events that occur in rapid succession, Brevo frequently delivers them out of order. For example, it’s not uncommon
to receive a “delivered” event before the corresponding “queued.”

The event’s esp_event field will be a dict of raw webhook data received from Brevo.

1.5. Supported ESPs 49

https://help.brevo.com/hc/en-us/articles/360000946299
https://help.brevo.com/hc/en-us/articles/360000946299
https://docs.djangoproject.com/en/stable/topics/email/#django.core.mail.EmailMessage
https://docs.djangoproject.com/en/stable/ref/settings/#std-setting-DEFAULT_FROM_EMAIL
https://docs.djangoproject.com/en/stable/topics/email/#django.core.mail.EmailMessage
https://help.brevo.com/hc/en-us/articles/360000991960
https://app-smtp.brevo.com/webhook
https://app-smtp.brevo.com/webhook
https://docs.python.org/3.10/library/stdtypes.html#dict

Anymail Documentation, Release 10.1

Inbound webhook

New in version 10.1.

If you want to receive email from Brevo through Anymail’s normalized inbound handling, follow Brevo’s Inbound
parsing webhooks guide to enable inbound service and add Anymail’s inbound webhook.

At the “Creating the webhook” step, set the "url" param to:

https://random:random@yoursite.example.com/anymail/sendinblue/inbound/

• random:random is an ANYMAIL_WEBHOOK_SECRET shared secret

• yoursite.example.com is your Django site

Brevo does not currently seem to have a dashboard for managing or monitoring inbound service. However, you can
run API calls directly from their documentation by entering your API key in “Header” field above the example, and
then clicking “Try It!”. The webhooks management APIs and inbound events list API can be helpful for diagnosing
inbound issues.

1.5.3 MailerSend

Anymail integrates Django with the MailerSend transactional email service, using their email API endpoint.

Settings

EMAIL_BACKEND

To use Anymail’s MailerSend backend, set:

EMAIL_BACKEND = "anymail.backends.mailersend.EmailBackend"

in your settings.py.

MAILERSEND_API_TOKEN

Required for sending. A MailerSend API token generated in your MailerSend Email domains settings. For the token
permission level, “custom access” is recommended, with full access to email and no access for all other features.

ANYMAIL = {
...
"MAILERSEND_API_TOKEN": "<your API token>",

}

Anymail will also look for MAILERSEND_API_TOKEN at the root of the settings file if neither
ANYMAIL["MAILERSEND_API_TOKEN"] nor ANYMAIL_MAILERSEND_API_TOKEN is set.

If your Django project sends email from multiple MailerSend domains, you will need a separate API token for each
domain. Use the token matching your DEFAULT_FROM_EMAIL domain in settings.py, and then override where neces-
sary for individual emails by setting "api_token" in the message’s esp_extra. (You could centralize this logic using
Anymail’s Pre-send signal.)

50 Chapter 1. Documentation

https://developers.brevo.com/docs/inbound-parse-webhooks
https://developers.brevo.com/docs/inbound-parse-webhooks
https://developers.brevo.com/reference/getwebhooks-1
https://developers.brevo.com/reference/getinboundemailevents
https://www.mailersend.com/
https://developers.mailersend.com/api/v1/email.html
https://app.mailersend.com/domains
https://docs.djangoproject.com/en/stable/ref/settings/#std-setting-DEFAULT_FROM_EMAIL

Anymail Documentation, Release 10.1

MAILERSEND_BATCH_SEND_MODE

If you are using Anymail’s merge_data with multiple recipients (“batch sending”), set this to indicate how to handle
the batch. See Batch send mode below for more information.

Choices are "use-bulk-email" or "expose-to-list". The default None will raise an error if merge_data is used
with more than one to recipient.

ANYMAIL = {
...
"MAILERSEND_BATCH_SEND_MODE": "use-bulk-email",

}

MAILERSEND_SIGNING_SECRET

The MailerSend webhook signing secret needed to verify webhook posts. Required if you are using activity tracking,
otherwise not necessary. (This is separate from Anymail’s WEBHOOK_SECRET setting.)

Find this in your MailerSend Email domains settings: after adding a webhook, look for the “signing secret” on the
webhook’s management page.

ANYMAIL = {
...
"MAILERSEND_SIGNING_SECRET": "<secret from webhook management page>",

}

MailerSend generates a unique secret for each webhook; if you edit your webhook you will need to update this setting
with the new signing secret. (Also, inbound routes use a different secret, with a different setting—see below.)

MAILERSEND_INBOUND_SECRET

The MailerSend inbound route secret needed to verify inbound notifications. Required if you are using inbound routing,
otherwise not necessary.

Find this in your MailerSend Email domains settings: after you have added an inbound route, look for the “secret”
immediately below the route url on the management page for that inbound route.

ANYMAIL = {
...
"MAILERSEND_INBOUND_SECRET": "<secret from inbound management page>",

}

MailerSend generates a unique secret for each inbound route url; if you edit your route you will need to update this
setting with the new secret. (Also, activity tracking webhooks use a different secret, with a different setting—see
above.)

1.5. Supported ESPs 51

https://app.mailersend.com/domains
https://app.mailersend.com/domains

Anymail Documentation, Release 10.1

MAILERSEND_API_URL

The base url for calling the MailerSend API.

The default is MAILERSEND_API_URL = "https://api.mailersend.com/v1/". (It’s unlikely you would need to
change this.)

exp_extra support

Anymail’s MailerSend backend will pass esp_extra values directly to MailerSend’s email API.

In addition, you can override the MAILERSEND_API_TOKEN for an individual message by providing "api-token", and
MAILERSEND_BATCH_SEND_MODE by providing "batch-send-mode" in the esp_extra dict.

Example:

message = AnymailMessage(...)
message.esp_extra = {

override your MailerSend domain's content tracking default:
"settings": {"track_content": False},

use a different MAILERSEND_API_TOKEN for this message:
"api_token": MAILERSEND_API_TOKEN_FOR_MARKETING_DOMAIN,

override the MAILERSEND_BATCH_SEND_MODE setting
just for this message:
"batch_send_mode": "use-bulk-email",

}

Nested values are merged deeply. When sending using MailerSend’s bulk-email API endpoint, the esp_extra params
are merged into the payload for every individual message in the batch.

Limitations and quirks

MailerSend does not support a few features offered by some other ESPs.

Anymail normally raises an AnymailUnsupportedFeature error when you try to send a message using features
that MailerSend doesn’t support You can tell Anymail to suppress these errors and send the messages anyway – see
Unsupported features.

Attachments require filenames, ignore content type MailerSend requires every attachment (even inline ones) to
have a filename. And it determines the content type of the attachment from the filename extension.

If you try to send an attachment without a filename, Anymail will substitute “attachment*.ext*” using an appro-
priate .ext for the content type.

If you try to send an attachment whose content type doesn’t match its filename extension, MailerSend will change
the content type to match the extension. (E.g., the filename “data.txt” will always be sent as “text/plain”, even if
you specified a “text/csv” content type.)

Single Reply-To MailerSend only supports a single Reply-To address.

If your message has multiple reply addresses, you’ll get an AnymailUnsupportedFeature error—or if you’ve
enabled ANYMAIL_IGNORE_UNSUPPORTED_FEATURES, Anymail will use only the first one.

Limited extra headers MailerSend does not allow most extra headers. There are two exceptions:

• You can include In-Reply-To in extra headers, set to a message-id (without the angle brackets).

52 Chapter 1. Documentation

https://developers.mailersend.com/api/v1/email.html

Anymail Documentation, Release 10.1

• You can include Precedence in extra headers to override the “Add precedence bulk header” option from
your MailerSend domain advanced settings (look under “More settings”). Anymail will set MailerSend’s
precedence_bulk param to true if your extra headers have Precedence set to "bulk" or "list" or
"junk", or false for any other value.

Any other extra headers will raise an AnymailUnsupportedFeature error.

No metadata support MailerSend does not support Anymail’s metadata or merge_metadata features.

No envelope sender overrides MailerSend does not support overriding envelope_sender on individual messages.
(To use a MailerSend sender identity, set the verified identity’s email address as the message’s from_email.)

API rate limits MailerSend provides rate limit headers with each API call response. To access them after a successful
send, use (e.g.,) message.anymail_status.esp_response.headers["x-ratelimit-remaining"].

If you exceed a rate limit, you’ll get an AnymailAPIError with error.status_code == 429, and can deter-
mine how many seconds to wait from error.response.headers["retry-after"].

Batch sending/merge and ESP templates

MailerSend supports ESP stored templates, on-the-fly templating, and batch sending with per-recipient merge data.
MailerSend’s approaches to batch sending don’t align perfectly with Anymail’s; be sure to read Batch send mode
below to understand the options.

MailerSend offers two different syntaxes for substituting data into templates: “simple personalization” and “advanced
personalization.” Anymail supports only the more flexible advanced personalization syntax. If you have MailerSend
templates using the “simple” syntax ({$variable_name}), you’ll need to convert them to the “advanced” syntax ({{
variable_name }}) for use with Anymail’s merge_data and merge_global_data.

Here’s an example defining an on-the-fly template that uses MailerSend advanced personalization variables:

message = EmailMessage(
from_email="shipping@example.com",
subject="Your order {{ order_no }} has shipped",
body="""Hi {{ name }},

We shipped your order {{ order_no }}
on {{ ship_date }}.""",

to=["alice@example.com", "Bob <bob@example.com>"]
)
(you'd probably also set a similar html body with variables)
message.merge_data = {

"alice@example.com": {"name": "Alice", "order_no": "12345"},
"bob@example.com": {"name": "Bob", "order_no": "54321"},

}
message.merge_global_data = {

"ship_date": "May 15" # Anymail maps globals to all recipients
}
(see discussion of batch-send-mode below)
message.esp_extra = {

"batch-send-mode": "use-bulk-email"
}

To send the same message with a MailerSend stored template from your account, set template_id , and omit any plain-
text or html body. If you’ve set a subject in your MailerSend template’s default settings, you can omit subject (other-
wise you must include it). And if your template default settings specify the From email, that will override from_email.
Example:

1.5. Supported ESPs 53

https://www.mailersend.com/help/send-email-on-behalf-of-clients
https://developers.mailersend.com/general.html#rate-limits
https://www.mailersend.com/help/how-to-use-variables#simple-personalization
https://www.mailersend.com/help/how-to-use-variables#advanced-personalization
https://www.mailersend.com/help/how-to-use-variables#advanced-personalization
https://www.mailersend.com/help/how-to-create-a-template

Anymail Documentation, Release 10.1

message = EmailMessage(
from_email="shipping@example.com",
(subject and body from template)
to=["alice@example.com", "Bob <bob@example.com>"]

)
message.template_id = "vzq12345678" # id of template in our account
... set merge_data and merge_global_data as above

MailerSend does not natively support global merge data. Anymail emulates the capability by copying any
merge_global_data values to every recipient.

Batch send mode

Anymail’s model for batch sending is that each recipient receives a separate email personalized for them, and that each
recipient sees only their own email address in the message’s To header.

MailerSend has a bulk-email API that matches Anymail’s batch sending model, but operates completely asyn-
chronously, which can complicate status tracking and error handling.

MailerSend also supports batch sending personalized emails through its regular email API, which avoids the bulk-email
limitations but exposes the entire To list to all recipients.

If you want to use Anymail’s merge_data for batch sending to multiple to recipients, you must select one
of these two approaches by specifying either "use-bulk-email" or "expose-to-list" in your Anymail
MAILERSEND_BATCH_SEND_MODE setting—or as "batch-send-mode" in the message’s esp_extra.

Caution: Using the "expose-to-list" MailerSend batch send mode will reveal all of the message’s To email
addresses to every recipient of the message.

If you use the "use-bulk-email" MailerSend batch send mode:

• The message.anymail_status.status will be {"unknown"}, because MailerSend detects errors and re-
jected recipients at a later time.

• The message.anymail_status.message_id will be a MailerSend bulk_email_id, prefixed with "bulk:"
to distinguish it from a regular message_id.

• You will need to poll MailerSend’s bulk-email status API to determine whether the send was successful, partially
successful, or failed, and to determine the event.message_id that will be sent to status tracking webhooks.

• Be aware that rate limits for the bulk-email API are significantly lower than MailerSend’s regular email API.

Rather than one of these batch sending options, an often-simpler approach is to loop over your recipient list and send
a separate message for each. You can still use templates and merge_data:

How to "manually" send a batch of emails to one recipient at a time.
(There's no need to specify a MailerSend "batch-send-mode".)
to_list = ["alice@example.com", "bob@example.com"]
merge_data = {

"alice@example.com": {"name": "Alice", "order_no": "12345"},
"bob@example.com": {"name": "Bob", "order_no": "54321"},

}
merge_global_data = {

"ship_date": "May 15",
(continues on next page)

54 Chapter 1. Documentation

https://developers.mailersend.com/api/v1/email.html#send-bulk-emails
https://developers.mailersend.com/api/v1/email.html
https://developers.mailersend.com/api/v1/email.html#get-bulk-email-status

Anymail Documentation, Release 10.1

(continued from previous page)

}
for to_email in to_list:

message = AnymailMessage(
just one recipient per message:
to=[to_email],
provide template variables for this one recipient:
merge_global_data = merge_global_data | merge_data[to_email],
any other attributes you want:
template_id = "vzq12345678",
from_email="shipping@example.com",

)
try:

message.send()
except AnymailAPIError:

Handle error -- e.g., schedule for retry later.
else:

Either successful send or to_email is rejected.
message.anymail_status will be {"queued"} or {"rejected"}.
message.anymail_status.message_id can be stored to match
with event.message_id in a status tracking signal receiver.

Status tracking webhooks

If you are using Anymail’s normalized status tracking, follow MailerSend’s instructions to add a webhook to your
domain.

• Enter this Anymail tracking URL as the webhook’s “Endpoint URL” (where yoursite.example.com is your Django
site):

https://yoursite.example.com/anymail/mailersend/tracking/

Because MailerSend implements webhook signing, it’s not necessary to use Anymail’s shared webhook secret
for security with MailerSend webhooks. However, it doesn’t hurt to use both. If you have set an Anymail
WEBHOOK_SECRET, include that random:random shared secret in the webhook endpoint URL:

https://random:random@yoursite.example.com/anymail/mailersend/tracking/

• For “Events to send”, select any or all events you want to track.

• After you have saved the webhook, go back into MailerSend’s webhook management page, and reveal
and copy the MailerSend “webhook signing secret”. Provide that in your settings.py ANYMAIL settings as
MAILERSEND_SIGNING_SECRET so that Anymail can verify calls to the webhook:

ANYMAIL = {
...
MAILERSEND_SIGNING_SECRET = "<secret you copied>"

}

For troubleshooting, MailerSend provides a helpful log of calls to the webhook. See “About webhook attempts” in
their documentation for more details.

Note: MailerSend has a relatively short three second timeout for webhook calls. Be sure to avoid any lengthy opera-
tions in your Anymail tracking signal receiver function, or MailerSend will consider the notification failed at retry it.
The event’s event_id field can help identify duplicate notifications.

1.5. Supported ESPs 55

https://www.mailersend.com/help/webhooks#adding-webhooks
https://www.mailersend.com/help/webhooks#adding-webhooks
https://www.mailersend.com/help/webhooks#webhook-attempts

Anymail Documentation, Release 10.1

MailerSend retries webhook notifications only twice, with delays of 10 and then 100 seconds. If your webhook is ever
offline for more than a couple minutes, you many miss some tracking events. You can use MailerSend’s activity API
to query for events that may have been missed.

MailerSend will report these Anymail event_types: sent, delivered, bounced, complained, unsubscribed, opened,
and clicked.

The event’s esp_event field will be the complete parsed MailerSend webhook payload, including an additional wrapper
object not shown in their documentation. The activity data in MailerSend’s webhook payload example is available as
event.esp_event["data"].

Inbound routing

If you want to receive email from MailerSend through Anymail’s normalized inbound handling, follow MailerSend’s
guide to How to set up an inbound route.

• For “Route to” (in their step 8), enter this Anymail inbound route endpoint URL (where yoursite.example.com
is your Django site):

https://yoursite.example.com/anymail/mailersend/inbound/

Because MailerSend signs its inbound notifications, it’s not necessary to use Anymail’s shared webhook secret
for security with MailerSend inbound routing. However, it doesn’t hurt to use both. If you have set an Anymail
WEBHOOK_SECRET, include that random:random shared secret in the inbound route endpoint URL:

https://random:random@yoursite.example.com/anymail/mailersend/inbound/

• After you have saved the inbound route, go back into MailerSend’s inbound route management page, and copy
the “Secret” displayed immediately below the “Route to” URL. Provide that in your settings.py ANYMAIL settings
as MAILERSEND_INBOUND_SECRET so that Anymail can verify calls to the inbound endpoint:

ANYMAIL = {
...
MAILERSEND_INBOUND_SECRET = "<secret you copied>"

}

Note that this is a different secret from the MAILERSEND_SIGNING_SECRET used to verify activity tracking
webhooks. If you are using both features, be sure to include both settings.

For troubleshooting, MailerSend provides a helpful inbound activity log near the end of the route management page.
See Where to find inbound emails in their docs for more details.

Note: MailerSend imposes a three second limit on all notifications. If your inbound signal receiver function takes too
long, MailerSend may think the notification failed. To avoid problems, it’s essential you offload any lengthy operations
to a background task.

MailerSend does not retry failed inbound notifications. If your Django app is ever unreachable for any reason, you will
miss inbound mail that arrives during that time.

56 Chapter 1. Documentation

https://developers.mailersend.com/api/v1/webhooks.html#payload-example
https://www.mailersend.com/help/inbound-route
https://www.mailersend.com/help/inbound-route#where

Anymail Documentation, Release 10.1

1.5.4 Mailgun

Anymail integrates with the Mailgun transactional email service, using their messages REST API.

Note: By default, Anymail connects to Mailgun’s US-based API servers. If you are using Mailgun’s EU region, be
sure to change the MAILGUN_API_URL Anymail setting as shown below.

Settings

EMAIL_BACKEND

To use Anymail’s Mailgun backend, set:

EMAIL_BACKEND = "anymail.backends.mailgun.EmailBackend"

in your settings.py.

MAILGUN_API_KEY

Required for sending. Your Mailgun “Private API key” from the Mailgun API security settings:

ANYMAIL = {
...
"MAILGUN_API_KEY": "<your API key>",

}

Anymail will also look for MAILGUN_API_KEY at the root of the settings file if neither ANYMAIL["MAILGUN_API_KEY"]
nor ANYMAIL_MAILGUN_API_KEY is set.

MAILGUN_API_URL

The base url for calling the Mailgun API.

The default is MAILGUN_API_URL = "https://api.mailgun.net/v3", which connects to Mailgun’s US service.
You must change this if you are using Mailgun’s European region:

ANYMAIL = {
"MAILGUN_API_KEY": "...",
"MAILGUN_API_URL": "https://api.eu.mailgun.net/v3",
...

}

(Do not include your sender domain or “/messages” in the API URL. Anymail figures this out for you.)

1.5. Supported ESPs 57

https://mailgun.com
https://documentation.mailgun.com/en/latest/api-sending.html#sending
https://app.mailgun.com/app/account/security/api_keys

Anymail Documentation, Release 10.1

MAILGUN_SENDER_DOMAIN

If you are using a specific Mailgun sender domain that is different from your messages’ from_email domains, set this
to the domain you’ve configured in your Mailgun account.

If your messages’ from_email domains always match a configured Mailgun sender domain, this setting is not needed.

See Email sender domain below for examples.

MAILGUN_WEBHOOK_SIGNING_KEY

New in version 6.1.

Required for tracking or inbound webhooks. Your “HTTP webhook signing key” from the Mailgun API security
settings:

ANYMAIL = {
...
"MAILGUN_WEBHOOK_SIGNING_KEY": "<your webhook signing key>",

}

If not provided, Anymail will attempt to validate webhooks using the MAILGUN_API_KEY setting instead. (These two
keys have the same values for new Mailgun users, but will diverge if you ever rotate either key.)

Email sender domain

Mailgun’s API requires identifying the sender domain. By default, Anymail uses the domain of each messages’s
from_email (e.g., “example.com” for “from@example.com”).

You will need to override this default if you are using a dedicated Mailgun sender domain that is different from a
message’s from_email domain.

For example, if you are sending from “orders@example.com”, but your Mailgun account is configured for
“mail1.example.com”, you should provide MAILGUN_SENDER_DOMAIN in your settings.py:

ANYMAIL = {
...
"MAILGUN_API_KEY": "<your API key>",
"MAILGUN_SENDER_DOMAIN": "mail1.example.com"

}

If you need to override the sender domain for an individual message, use Anymail’s envelope_sender (only the
domain is used; anything before the @ is ignored):

message = EmailMessage(from_email="marketing@example.com", ...)
message.envelope_sender = "anything@mail2.example.com" # the "anything@" is␣
→˓ignored

58 Chapter 1. Documentation

https://help.mailgun.com/hc/en-us/articles/202256730-How-do-I-pick-a-domain-name-for-my-Mailgun-account-
https://app.mailgun.com/app/account/security/api_keys
https://app.mailgun.com/app/account/security/api_keys
https://help.mailgun.com/hc/en-us/articles/202256730-How-do-I-pick-a-domain-name-for-my-Mailgun-account-

Anymail Documentation, Release 10.1

exp_extra support

Anymail’s Mailgun backend will pass all esp_extra values directly to Mailgun. You can use any of the (non-file)
parameters listed in the Mailgun sending docs. Example:

message = AnymailMessage(...)
message.esp_extra = {

'o:deliverytime-optimize-period': '24h', # use Mailgun Send Time␣
→˓Optimization
'o:time-zone-localize': '16:00', # use Mailgun Timezone Optimization
'o:testmode': 'yes', # use Mailgun's test mode

}

Limitations and quirks

Attachments require filenames Mailgun has an undocumented API requirement that every attachment must have a
filename. Attachments with missing filenames are silently dropped from the sent message. Similarly, every inline
attachment must have a Content-ID.

To avoid unexpected behavior, Anymail will raise an AnymailUnsupportedFeature error if you attempt to
send a message through Mailgun with any attachments that don’t have filenames (or inline attachments that don’t
have Content-IDs).

Ensure your attachments have filenames by using message.attach_file(filename), message.
attach(content, filename="..."), or if you are constructing your own MIME objects to attach,
mimeobj.add_header("Content-Disposition", "attachment", filename="...").

Ensure your inline attachments have Content-IDs by using Anymail’s inline image helpers, or if you
are constructing your own MIME objects, mimeobj.add_header("Content-ID", "...") and mimeobj.
add_header("Content-Disposition", "inline").

Changed in version 4.3: Earlier Anymail releases did not check for these cases, and attachments without
filenames/Content-IDs would be ignored by Mailgun without notice.

Display name problems with punctuation and non-ASCII characters Mailgun does not correctly handle certain
display names in From, To, and other email headers. If a display name includes both non-ASCII characters
and certain punctuation (such as parentheses), the resulting email will use a non-standard encoding that causes
some email clients to display additional " or \" characters wrapping the display name. (Verified and reported to
Mailgun engineering 3/2022. See Anymail issue #270 for examples and specific details.)

Envelope sender uses only domain Anymail’s envelope_sender is used to select your Mailgun sender domain.
For obvious reasons, only the domain portion applies. You can use anything before the @, and it will be ignored.

Using merge_metadata with merge_data If you use both Anymail’s merge_data and merge_metadata features,
make sure your merge_data keys do not start with v:. (It’s a good idea anyway to avoid colons and other special
characters in merge_data keys, as this isn’t generally portable to other ESPs.)

The same underlying Mailgun feature (“recipient-variables”) is used to implement both Anymail features. To
avoid conflicts, Anymail prepends v: to recipient variables needed for merge_metadata. (This prefix is stripped
as Mailgun prepares the message to send, so it won’t be present in your Mailgun API logs or the metadata that is
sent to tracking webhooks.)

Additional limitations on merge_data with template_id If you are using Mailgun’s stored handlebars templates
(Anymail’s template_id), merge_data cannot contain complex types or have any keys that conflict with
metadata. See Limitations with stored handlebars templates below for more details.

1.5. Supported ESPs 59

https://documentation.mailgun.com/en/latest/api-sending.html#sending
https://mailgun.uservoice.com/forums/156243-feature-requests/suggestions/35668606
https://docs.djangoproject.com/en/stable/topics/email/#django.core.mail.EmailMessage
https://docs.djangoproject.com/en/stable/topics/email/#django.core.mail.EmailMessage
https://docs.djangoproject.com/en/stable/topics/email/#django.core.mail.EmailMessage
https://docs.python.org/3.10/library/email.compat32-message.html#email.message.Message.add_header
https://docs.python.org/3.10/library/email.compat32-message.html#email.message.Message.add_header
https://docs.python.org/3.10/library/email.compat32-message.html#email.message.Message.add_header
https://docs.python.org/3.10/library/email.compat32-message.html#email.message.Message.add_header
https://github.com/anymail/django-anymail/issues/270

Anymail Documentation, Release 10.1

merge_metadata values default to empty string If you use Anymail’s merge_metadata feature, and you supply
metadata keys for some recipients but not others, Anymail will first try to resolve the missing keys in metadata,
and if they are not found there will default them to an empty string value.

Your tracking webhooks will receive metadata values (either that you provided or the default empty string) for
every key used with any recipient in the send.

AMP for Email Mailgun supports sending AMPHTML email content. To include it, use message.
attach_alternative("...AMPHTML content...", "text/x-amp-html") (and be sure to also include
regular HTML and/or text bodies, too).

New in version 8.2.

Batch sending/merge and ESP templates

Mailgun supports ESP stored templates, on-the-fly templating, and batch sending with per-recipient merge data.

Changed in version 7.0: Added support for Mailgun’s stored (handlebars) templates.

Mailgun has two different syntaxes for substituting data into templates:

• “Recipient variables” look like %recipient.name%, and are used with on-the-fly templates. You can refer to
a recipient variable inside a message’s body, subject, or other message attributes defined in your Django code.
See Mailgun batch sending for more information. (Note that Mailgun’s docs also sometimes refer to recipient
variables as “template variables,” and there are some additional predefined ones described in their docs.)

• “Template substitutions” look like {{ name }}, and can only be used in handlebars templates that are defined
and stored in your Mailgun account (via the Mailgun dashboard or API). You refer to a stored template using
Anymail’s template_id in your Django code. See Mailgun templates for more information.

With either type of template, you supply the substitution data using Anymail’s normalized merge_data and
merge_global_data message attributes. Anymail will figure out the correct Mailgun API parameters to use.

Here’s an example defining an on-the-fly template that uses Mailgun recipient variables:

message = EmailMessage(
from_email="shipping@example.com",
Use %recipient.___% syntax in subject and body:
subject="Your order %recipient.order_no% has shipped",
body="""Hi %recipient.name%,

We shipped your order %recipient.order_no%
on %recipient.ship_date%.""",

to=["alice@example.com", "Bob <bob@example.com>"]
)
(you'd probably also set a similar html body with %recipient.___% variables)
message.merge_data = {

'alice@example.com': {'name': "Alice", 'order_no': "12345"},
'bob@example.com': {'name': "Bob", 'order_no': "54321"},

}
message.merge_global_data = {

'ship_date': "May 15" # Anymail maps globals to all recipients
}

And here’s an example that uses the same data with a stored template, which could refer to {{ name }}, {{ order_no
}}, and {{ ship_date }} in its definition:

60 Chapter 1. Documentation

https://documentation.mailgun.com/en/latest/user_manual.html#batch-sending
https://documentation.mailgun.com/en/latest/user_manual.html#templates

Anymail Documentation, Release 10.1

message = EmailMessage(
from_email="shipping@example.com",
The message body and html_body come from from the stored template.
(You can still use %recipient.___% fields in the subject:)
subject="Your order %recipient.order_no% has shipped",
to=["alice@example.com", "Bob <bob@example.com>"]

)
message.template_id = 'shipping-notification' # name of template in our␣
→˓account
The substitution data is exactly the same as in the previous example:
message.merge_data = {

'alice@example.com': {'name': "Alice", 'order_no': "12345"},
'bob@example.com': {'name': "Bob", 'order_no': "54321"},

}
message.merge_global_data = {

'ship_date': "May 15" # Anymail maps globals to all recipients
}

When you supply per-recipient merge_data, Anymail supplies Mailgun’s recipient-variables parameter, which
puts Mailgun in batch sending mode so that each “to” recipient sees only their own email address. (Any cc’s or bcc’s
will be duplicated for every to-recipient.)

If you want to use batch sending with a regular message (without a template), set merge data to an empty dict: message.
merge_data = {}.

Mailgun does not natively support global merge data. Anymail emulates the capability by copying any
merge_global_data values to every recipient.

Limitations with stored handlebars templates

Although Anymail tries to insulate you from Mailgun’s relatively complicated API parameters for template substitutions
in batch sends, there are two cases it can’t handle. These only apply to stored handlebars templates (when you’ve set
Anymail’s template_id attribute).

First, metadata and template merge data substitutions use the same underlying “custom data” API parame-
ters when a handlebars template is used. If you have any duplicate keys between your tracking metadata
(metadata/merge_metadata) and your template merge data (merge_data/merge_global_data), Anymail will
raise an AnymailUnsupportedFeature error.

Second, Mailgun’s API does not allow complex data types like lists or dicts to be passed as template substitutions for a
batch send (confirmed with Mailgun support 8/2019). Your Anymail merge_data and merge_global_data should
only use simple types like string or number. This means you cannot use the handlebars {{#each item}} block helper
or dotted field notation like {{object.field}}with data passed through Anymail’s normalized merge data attributes.

Most ESPs do not support complex merge data types, so trying to do that is not recommended anyway, for portability
reasons. But if you do want to pass complex types to Mailgun handlebars templates, and you’re only sending to one
recipient at a time, here’s a (non-portable!) workaround:

Using complex substitutions with Mailgun handlebars templates.
This works only for a single recipient, and is not at all portable between␣
→˓ESPs.
message = EmailMessage(

from_email="shipping@example.com",
to=["alice@example.com"], # single recipient *only* (no batch send)

(continues on next page)

1.5. Supported ESPs 61

Anymail Documentation, Release 10.1

(continued from previous page)

subject="Your order has shipped", # recipient variables *not* available
)
message.template_id = 'shipping-notification' # name of template in our␣
→˓account
substitutions = {

'items': [# complex substitution data
{'product': "Anvil", 'quantity': 1},
{'product': "Tacks", 'quantity': 100},

],
'ship_date': "May 15",

}
Do *not* set Anymail's message.merge_data, merge_global_data, or merge_
→˓metadata.
Instead add Mailgun custom variables directly:
message.extra_headers['X-Mailgun-Variables'] = json.dumps(substitutions)

Status tracking webhooks

Changed in version 4.0: Added support for Mailgun’s June, 2018 (non-“legacy”) webhook format.

Changed in version 6.1: Added support for a new MAILGUN_WEBHOOK_SIGNING_KEY setting, separate from your
MAILGUN_API_KEY.

If you are using Anymail’s normalized status tracking, enter the url in the Mailgun webhooks config for your domain.
(Be sure to select the correct sending domain—Mailgun’s sandbox and production domains have separate webhook
settings.)

Mailgun allows you to enter a different URL for each event type: just enter this same Anymail tracking URL for all
events you want to receive:

https://random:random@yoursite.example.com/anymail/mailgun/tracking/

• random:random is an ANYMAIL_WEBHOOK_SECRET shared secret

• yoursite.example.com is your Django site

Mailgun implements a limited form of webhook signing, and Anymail will verify these signatures against your
MAILGUN_WEBHOOK_SIGNING_KEY Anymail setting. By default, Mailgun’s webhook signature provides similar se-
curity to Anymail’s shared webhook secret, so it’s acceptable to omit the ANYMAIL_WEBHOOK_SECRET setting (and
“{random}:{random}@” portion of the webhook url) with Mailgun webhooks.

Mailgun will report these Anymail event_types: delivered, rejected, bounced, complained, unsubscribed, opened,
clicked.

The event’s esp_event field will be the parsed Mailgun webhook payload as a Python dict with "signature" and
"event-data" keys.

Anymail uses Mailgun’s webhook token as its normalized event_id , rather than Mailgun’s event-data id (which is
only guaranteed to be unique during a single day). If you need the event-data id, it can be accessed in your webhook
handler as event.esp_event["event-data"]["id"]. (This can be helpful for working with Mailgun’s other event
APIs.)

Note: Mailgun legacy webhooks
In late June, 2018, Mailgun introduced a new set of webhooks with an improved payload design, and at the same time
renamed their original webhooks to “Legacy Webhooks.”

62 Chapter 1. Documentation

https://documentation.mailgun.com/en/latest/user_manual.html#webhooks
https://docs.python.org/3.10/library/stdtypes.html#dict

Anymail Documentation, Release 10.1

Anymail v4.0 and later supports both new and legacy Mailgun webhooks, and the same Anymail webhook url works
as either. Earlier Anymail versions can only be used as legacy webhook urls.

The new (non-legacy) webhooks are preferred, particularly with Anymail’s metadata and tags features. But if you
have already configured the legacy webhooks, there is no need to change.

If you are using Mailgun’s legacy webhooks:

• The event.esp_event field will be a Django QueryDict of Mailgun event fields (the raw POST data provided
by legacy webhooks).

• You should avoid using “body-plain,” “h,” “message-headers,” “message-id” or “tag” as metadata keys. A
design limitation in Mailgun’s legacy webhooks prevents Anymail from reliably retrieving this metadata from
opened, clicked, and unsubscribed events. (This is not an issue with the newer, non-legacy webhooks.)

Inbound webhook

If you want to receive email from Mailgun through Anymail’s normalized inbound handling, follow Mailgun’s Receiv-
ing, Forwarding and Storing Messages guide to set up an inbound route that forwards to Anymail’s inbound webhook.
Create an inbound route in Mailgun’s dashboard on the Email Receiving panel, or use Mailgun’s API.

Use this url as the route’s “forward” destination:

https://random:random@yoursite.example.com/anymail/mailgun/inbound_mime/

• random:random is an ANYMAIL_WEBHOOK_SECRET shared secret

• yoursite.example.com is your Django site

• mime at the end tells Mailgun to supply the entire message in “raw MIME” format (see note below)

You must use Mailgun’s “forward” route action; Anymail does not currently support “store and notify.” (For debugging,
you might find it helpful to also enable the “store” route action to keep a copy of inbound messages on Mailgun’s servers,
but Anymail’s inbound webhook won’t work as a store-notify url.)

If you want to use Anymail’s normalized spam_detected and spam_score attributes, you’ll need to set your Mailgun
domain’s inbound spam filter to “Deliver spam, but add X-Mailgun-SFlag and X-Mailgun-SScore headers” (in the
Mailgun domains config).

Anymail will verify Mailgun inbound message events using your MAILGUN_WEBHOOK_SIGNING_KEY Anymail setting.
By default, Mailgun’s webhook signature provides similar security to Anymail’s shared webhook secret, so it’s ac-
ceptable to omit the ANYMAIL_WEBHOOK_SECRET setting (and random:random@ portion of the forwarding url) with
Mailgun inbound routing.

Note: Anymail also supports Mailgun’s “fully-parsed” inbound message format, but the “raw MIME” version is
preferred to get the most accurate representation of any received email. Using raw MIME also avoids a limitation
in Django’s multipart/form-data handling that can strip attachments with certain filenames (and inline images
without filenames).

To use Mailgun’s fully-parsed format, change .../inbound_mime/ to just .../inbound/ at the end of the route
forwarding url.

Changed in version 8.6: Using Mailgun’s full-parsed (not raw MIME) inbound message format is no longer recom-
mended.

1.5. Supported ESPs 63

https://docs.djangoproject.com/en/stable/ref/request-response/#django.http.QueryDict
https://documentation.mailgun.com/en/latest/user_manual.html#receiving-forwarding-and-storing-messages
https://documentation.mailgun.com/en/latest/user_manual.html#receiving-forwarding-and-storing-messages
https://app.mailgun.com/app/receiving/routes
https://app.mailgun.com/app/sending/domains

Anymail Documentation, Release 10.1

1.5.5 Mailjet

Anymail integrates with the Mailjet email service, using their transactional Send API v3.1.

Changed in version 8.0: Earlier Anymail versions used Mailjet’s older Send API v3. The change to v3.1 fixes some
limitations of the earlier API, and should only affect your code if you use Anymail’s esp_extra feature to set API-specific
options or if you are trying to send messages with multiple reply-to addresses.

Settings

EMAIL_BACKEND

To use Anymail’s Mailjet backend, set:

EMAIL_BACKEND = "anymail.backends.mailjet.EmailBackend"

in your settings.py.

MAILJET_API_KEY and MAILJET_SECRET_KEY

Your Mailjet API key and secret key, from your Mailjet account REST API settings under API Key Management.
(Mailjet’s documentation also sometimes uses “API private key” to mean the same thing as “secret key.”)

ANYMAIL = {
...
"MAILJET_API_KEY": "<your API key>",
"MAILJET_SECRET_KEY": "<your API secret>",

}

You can use either the main account or a sub-account API key.

Anymail will also look for MAILJET_API_KEY and MAILJET_SECRET_KEY at the root of the settings file if neither
ANYMAIL["MAILJET_API_KEY"] nor ANYMAIL_MAILJET_API_KEY is set.

MAILJET_API_URL

The base url for calling the Mailjet API.

The default is MAILJET_API_URL = "https://api.mailjet.com/v3.1/" (It’s unlikely you would need to change
this.)

esp_extra support

To use Mailjet features not directly supported by Anymail, you can set a message’s esp_extra to a dict of Mailjet’s
Send API body parameters. Your esp_extra dict will be deeply merged into the Mailjet API payload, with esp_extra
having precedence in conflicts.

(Note that it’s not possible to merge into the "Messages" key; any value you supply would override "Messages"
completely. Use "Globals" for options to apply to all messages.)

Example:

64 Chapter 1. Documentation

https://www.mailjet.com/
https://dev.mailjet.com/guides/#send-api-v3-1
https://dev.mailjet.com/guides/#send-api-v3
https://app.mailjet.com/account/apikeys
https://docs.python.org/3.10/library/stdtypes.html#dict
https://dev.mailjet.com/email/reference/send-emails#v3_1_post_send

Anymail Documentation, Release 10.1

message.esp_extra = {
Most "Messages" options can be included under Globals:
"Globals": {

"Priority": 3, # Use Mailjet critically-high priority queue
"TemplateErrorReporting": {"Email": "dev+mailtemplatebug@example.com"},

},
A few options must be at the root:
"SandboxMode": True,
"AdvanceErrorHandling": True,
Don't try to set Messages:
"Messages": [... this would override *all* recipients, not be merged ...]

}

(You can also set "esp_extra" in Anymail’s global send defaults to apply it to all messages.)

Limitations and quirks

Single reply_to Mailjet’s API only supports a single Reply-To email address. If your message
has two or more, you’ll get an AnymailUnsupportedFeature error—or if you’ve enabled
ANYMAIL_IGNORE_UNSUPPORTED_FEATURES, Anymail will use only the first reply_to address.

Single tag Anymail uses Mailjet’s campaign option for tags, and Mailjet allows only a single campaign per message. If
your message has two or more tags, you’ll get an AnymailUnsupportedFeature error—or if you’ve enabled
ANYMAIL_IGNORE_UNSUPPORTED_FEATURES, Anymail will use only the first tag.

No delayed sending Mailjet does not support send_at.

Envelope sender may require approval Anymail passes envelope_sender to Mailjet, but this may result in an API
error if you have not received special approval from Mailjet support to use custom senders.

message_id is MessageID (not MessageUUID) Mailjet’s Send API v3.1 returns both a “legacy” MessageID and a
newer MessageUUID for each successfully sent message. Anymail uses the MessageID as the message_id
when reporting ESP send status, because Mailjet’s other (statistics, event tracking) APIs don’t yet support Mes-
sageUUID.

Older limitations
Changed in version 6.0: Earlier versions of Anymail were unable to mix cc or bcc fields and merge_data in the same
Mailjet message. This limitation was removed in Anymail 6.0.

Changed in version 8.0: Earlier Anymail versions had special handling to work around a Mailjet v3 API bug with
commas in recipient display names. Anymail 8.0 uses Mailjet’s v3.1 API, which does not have the bug.

Batch sending/merge and ESP templates

Mailjet offers both ESP stored templates and batch sending with per-recipient merge data.

When you send a message with multiple to addresses, the merge_data determines how many distinct messages are
sent:

• If merge_data is not set (the default), Anymail will tell Mailjet to send a single message, and all recipients will
see the complete list of To addresses.

• If merge_data is set—even to an empty {} dict, Anymail will tell Mailjet to send a separate message for each
to address, and the recipients won’t see the other To addresses.

1.5. Supported ESPs 65

https://dev.mailjet.com/guides/#grouping-into-a-campaign

Anymail Documentation, Release 10.1

You can use a Mailjet stored transactional template by setting a message’s template_id to the template’s numeric
template ID. (Not the template’s name. To get the numeric template id, click on the name in your Mailjet transactional
templates, then look for “Template ID” above the preview that appears.)

Supply the template merge data values with Anymail’s normalized merge_data and merge_global_data message
attributes.

message = EmailMessage(
...
omit subject and body (or set to None) to use template content
to=["alice@example.com", "Bob <bob@example.com>"]

)
message.template_id = "176375" # Mailjet numeric template id
message.from_email = None # Use the From address stored with the template
message.merge_data = {

'alice@example.com': {'name': "Alice", 'order_no': "12345"},
'bob@example.com': {'name': "Bob", 'order_no': "54321"},

}
message.merge_global_data = {

'ship_date': "May 15",
}

Any from_email in your EmailMessage will override the template’s default sender address. To use the template’s
sender, you must explicitly set from_email = None after creating the EmailMessage, as shown above. (If you omit
this, Django’s default DEFAULT_FROM_EMAIL will be used.)

Instead of creating a stored template at Mailjet, you can also refer to merge fields directly in an EmailMessage’s
body—the message itself is used as an on-the-fly template:

message = EmailMessage(
from_email="orders@example.com",
to=["alice@example.com", "Bob <bob@example.com>"],
subject="Your order has shipped", # subject doesn't support on-the-fly␣

→˓merge fields
Use [[var:FIELD]] to for on-the-fly merge into plaintext or html body:
body="Dear [[var:name]]: Your order [[var:order_no]] shipped on [[var:ship_

→˓date]]."
)
message.merge_data = {

'alice@example.com': {'name': "Alice", 'order_no': "12345"},
'bob@example.com': {'name': "Bob", 'order_no': "54321"},

}
message.merge_global_data = {

'ship_date': "May 15",
}

(Note that on-the-fly templates use square brackets to indicate “personalization” merge fields, rather than the curly
brackets used with stored templates in Mailjet’s template language.)

See Mailjet’s template documentation and template language docs for more information.

66 Chapter 1. Documentation

https://app.mailjet.com/templates/transactional
https://app.mailjet.com/templates/transactional
https://docs.djangoproject.com/en/stable/ref/settings/#std-setting-DEFAULT_FROM_EMAIL
https://dev.mailjet.com/guides/#personalisation
https://www.mailjet.com/docs/template_builder_transactional
https://dev.mailjet.com/template-language/

Anymail Documentation, Release 10.1

Status tracking webhooks

If you are using Anymail’s normalized status tracking, enter the url in your Mailjet account REST API settings under
Event tracking (triggers):

https://random:random@yoursite.example.com/anymail/mailjet/tracking/

• random:random is an ANYMAIL_WEBHOOK_SECRET shared secret

• yoursite.example.com is your Django site

Be sure to enter the URL in the Mailjet settings for all the event types you want to receive. It’s also recommended to
select the “group events” checkbox for each trigger, to minimize your server load.

Mailjet will report these Anymail event_types: rejected, bounced, deferred, delivered, opened, clicked, complained,
unsubscribed.

The event’s esp_event field will be a dict of Mailjet event fields, for a single event. (Although Mailjet calls webhooks
with batches of events, Anymail will invoke your signal receiver separately for each event in the batch.)

Inbound webhook

If you want to receive email from Mailjet through Anymail’s normalized inbound handling, follow Mailjet’s Parse API
inbound emails guide to set up Anymail’s inbound webhook.

The parseroute Url parameter will be:

https://random:random@yoursite.example.com/anymail/mailjet/inbound/

• random:random is an ANYMAIL_WEBHOOK_SECRET shared secret

• yoursite.example.com is your Django site

Once you’ve done Mailjet’s “basic setup” to configure the Parse API webhook, you can skip ahead to the “use your
own domain” section of their guide. (Anymail normalizes the inbound event for you, so you won’t need to worry about
Mailjet’s event and attachment formats.)

1.5.6 Mandrill

Anymail integrates with the Mandrill transactional email service from MailChimp, using their /messages/send HTTP
API.

Note: Limited Mandrill Testing
Anymail is developed to the public Mandrill documentation, but unlike other supported ESPs, we are unable to regularly
test against the live Mandrill APIs. (MailChimp doesn’t offer ongoing testing access for open source packages like
Anymail. We do have a limited use trial account, but we try to save that for debugging specific issues reported by
Anymail users.)

If you are using only Mandrill, and unlikely to ever need a different ESP, you might prefer using MailChimp’s official
mailchimp-transactional-python package instead of Anymail.

1.5. Supported ESPs 67

https://app.mailjet.com/account/triggers
https://docs.python.org/3.10/library/stdtypes.html#dict
https://dev.mailjet.com/guides/#events
https://dev.mailjet.com/guides/#parse-api-inbound-emails
https://dev.mailjet.com/guides/#parse-api-inbound-emails
https://mandrill.com/
https://mailchimp.com/developer/transactional/api/messages/send-new-message/
https://github.com/mailchimp/mailchimp-transactional-python/

Anymail Documentation, Release 10.1

Settings

EMAIL_BACKEND

To use Anymail’s Mandrill backend, set:

EMAIL_BACKEND = "anymail.backends.mandrill.EmailBackend"

in your settings.py.

MANDRILL_API_KEY

Required. Your Mandrill API key:

ANYMAIL = {
...
"MANDRILL_API_KEY": "<your API key>",

}

Anymail will also look for MANDRILL_API_KEY at the root of the settings file if neither
ANYMAIL["MANDRILL_API_KEY"] nor ANYMAIL_MANDRILL_API_KEY is set.

MANDRILL_WEBHOOK_KEY

Required if using Anymail’s webhooks. The “webhook authentication key” issued by Mandrill. See Authenticating
webhook requests in the Mandrill docs.

MANDRILL_WEBHOOK_URL

Required only if using Anymail’s webhooks and the hostname your Django server sees is different from the pub-
lic webhook URL you provided Mandrill. (E.g., if you have a proxy in front of your Django server that forwards
“https://yoursite.example.com” to “http://localhost:8000/”).

If you are seeing AnymailWebhookValidationFailure errors from your webhooks, set this to the exact webhook
URL you entered in Mandrill’s settings.

MANDRILL_API_URL

The base url for calling the Mandrill API. The default is MANDRILL_API_URL = "https://mandrillapp.com/api/
1.0", which is the secure, production version of Mandrill’s 1.0 API.

(It’s unlikely you would need to change this.)

68 Chapter 1. Documentation

https://mailchimp.com/developer/transactional/guides/track-respond-activity-webhooks/#authenticating-webhook-requests
https://mailchimp.com/developer/transactional/guides/track-respond-activity-webhooks/#authenticating-webhook-requests

Anymail Documentation, Release 10.1

esp_extra support

To use Mandrill features not directly supported by Anymail, you can set a message’s esp_extra to a dict of parameters
to merge into Mandrill’s /messages/send API call. Note that a few parameters go at the top level, but Mandrill expects
most options within a 'message' sub-dict—be sure to check their API docs:

message.esp_extra = {
Mandrill expects 'ip_pool' at top level...
'ip_pool': 'Bulk Pool',
... but 'subaccount' must be within a 'message' dict:
'message': {

'subaccount': 'Marketing Dept.'
}

}

Anymail has special handling that lets you specify Mandrill’s 'recipient_metadata' as a simple, pythonic dict
(similar in form to Anymail’s merge_data), rather than Mandrill’s more complex list of rcpt/values dicts. You can use
whichever style you prefer (but either way, recipient_metadata must be in esp_extra['message']).

Similarly, Anymail allows Mandrill’s 'template_content' in esp_extra (top level) either as a pythonic dict (similar
to Anymail’s merge_global_data) or as Mandrill’s more complex list of name/content dicts.

Limitations and quirks

Non-ASCII attachment filenames will be garbled Mandrill’s /messages/send API does not properly handle non-
ASCII characters in attachment filenames. As a result, some email clients will display those characters incor-
rectly. The only workaround is to limit attachment filenames to ASCII when sending through Mandrill. (Verified
and reported to MailChimp support 4/2022; see Anymail discussion #257 for more details.)

Envelope sender uses only domain Anymail’s envelope_sender is used to populate Mandrill’s
'return_path_domain'—but only the domain portion. (Mandrill always generates its own encoded
mailbox for the envelope sender.)

Batch sending/merge and ESP templates

Mandrill offers both ESP stored templates and batch sending with per-recipient merge data.

You can use a Mandrill stored template by setting a message’s template_id to the template’s name. Alternatively, you
can refer to merge fields directly in an EmailMessage’s subject and body—the message itself is used as an on-the-fly
template.

In either case, supply the merge data values with Anymail’s normalized merge_data and merge_global_data mes-
sage attributes.

This example defines the template inline, using Mandrill's
default MailChimp merge *|field|* syntax.
You could use a stored template, instead, with:
message.template_id = "template name"
message = EmailMessage(

...
subject="Your order *|order_no|* has shipped",
body="""Hi *|name|*,

We shipped your order *|order_no|*
on *|ship_date|*.""",

(continues on next page)

1.5. Supported ESPs 69

https://docs.python.org/3.10/library/stdtypes.html#dict
https://mailchimp.com/developer/transactional/api/messages/send-new-message/
https://docs.python.org/3.10/library/stdtypes.html#dict
https://docs.python.org/3.10/library/stdtypes.html#dict
https://github.com/anymail/django-anymail/discussions/257

Anymail Documentation, Release 10.1

(continued from previous page)

to=["alice@example.com", "Bob <bob@example.com>"]
)
(you'd probably also set a similar html body with merge fields)
message.merge_data = {

'alice@example.com': {'name': "Alice", 'order_no': "12345"},
'bob@example.com': {'name': "Bob", 'order_no': "54321"},

}
message.merge_global_data = {

'ship_date': "May 15",
}

When you supply per-recipient merge_data, Anymail automatically forces Mandrill’s preserve_recipients option
to false, so that each person in the message’s “to” list sees only their own email address.

To use the subject or from address defined with a Mandrill template, set the message’s subject or from_email
attribute to None.

See the Mandrill’s template docs for more information.

Status tracking and inbound webhooks

If you are using Anymail’s normalized status tracking and/or inbound handling, setting up Anymail’s webhook URL
requires deploying your Django project twice:

1. First, follow the instructions to configure Anymail’s webhooks. You must deploy before adding the webhook URL
to Mandrill, because Mandrill will attempt to verify the URL against your production server.

Once you’ve deployed, then set Anymail’s webhook URL in Mandrill, following their instructions for tracking
event webhooks (be sure to check the boxes for the events you want to receive) and/or inbound route webhooks.
In either case, the webhook url is:

https://random:random@yoursite.example.com/anymail/mandrill/

• random:random is an ANYMAIL_WEBHOOK_SECRET shared secret

• yoursite.example.com is your Django site

• (Note: Unlike Anymail’s other supported ESPs, the Mandrill webhook uses this single url for
both tracking and inbound events.)

2. Mandrill will provide you a “webhook authentication key” once it verifies the URL is working. Add
this to your Django project’s Anymail settings under MANDRILL_WEBHOOK_KEY . (You may also need to set
MANDRILL_WEBHOOK_URL depending on your server config.) Then deploy your project again.

Mandrill implements webhook signing on the entire event payload, and Anymail verifies this signature. Until the
correct webhook key is set, Anymail will raise an exception for any webhook calls from Mandrill (other than the initial
validation request).

Mandrill’s webhook signature also covers the exact posting URL. Anymail can usually figure out the correct (pub-
lic) URL where Mandrill called your webhook. But if you’re getting an AnymailWebhookValidationFailure with
a different URL than you provided Mandrill, you may need to examine your Django SECURE_PROXY_SSL_HEADER,
USE_X_FORWARDED_HOST, and/or USE_X_FORWARDED_PORT settings. If all else fails, you can set Anymail’s
MANDRILL_WEBHOOK_URL to the same public webhook URL you gave Mandrill.

Mandrill will report these Anymail event_types: sent, rejected, deferred, bounced, opened, clicked, complained,
unsubscribed, inbound. Mandrill does not support delivered events. Mandrill “whitelist” and “blacklist” change events
will show up as Anymail’s unknown event_type.

70 Chapter 1. Documentation

https://docs.python.org/3.10/library/constants.html#None
https://mailchimp.com/developer/transactional/docs/templates-dynamic-content/
https://mailchimp.com/developer/transactional/docs/webhooks/#add-a-new-webhook
https://mailchimp.com/developer/transactional/docs/webhooks/#add-a-new-webhook
https://mailchimp.com/developer/transactional/guides/set-up-inbound-email-processing/
https://docs.djangoproject.com/en/stable/ref/settings/#std-setting-SECURE_PROXY_SSL_HEADER
https://docs.djangoproject.com/en/stable/ref/settings/#std-setting-USE_X_FORWARDED_HOST
https://docs.djangoproject.com/en/stable/ref/settings/#std-setting-USE_X_FORWARDED_PORT

Anymail Documentation, Release 10.1

The event’s esp_event field will be a dict of Mandrill event fields, for a single event. (Although Mandrill calls
webhooks with batches of events, Anymail will invoke your signal receiver separately for each event in the batch.)

Migrating from Djrill

Anymail has its origins as a fork of the Djrill package, which supported only Mandrill. If you are migrating from Djrill
to Anymail – e.g., because you are thinking of switching ESPs – you’ll need to make a few changes to your code.

Changes to settings

MANDRILL_API_KEY Will still work, but consider moving it into the ANYMAIL settings dict, or changing it to
ANYMAIL_MANDRILL_API_KEY .

MANDRILL_SETTINGS Use ANYMAIL_SEND_DEFAULTS and/or ANYMAIL_MANDRILL_SEND_DEFAULTS (see Global
send defaults).

There is one slight behavioral difference between ANYMAIL_SEND_DEFAULTS and Djrill’s MANDRILL_SETTINGS:
in Djrill, setting tags or merge_vars on a message would completely override any global settings defaults. In
Anymail, those message attributes are merged with the values from ANYMAIL_SEND_DEFAULTS.

MANDRILL_SUBACCOUNT Set esp_extra globally in ANYMAIL_SEND_DEFAULTS:

ANYMAIL = {
...
"MANDRILL_SEND_DEFAULTS": {

"esp_extra": {
"message": {

"subaccount": "<your subaccount>"
}

}
}

}

MANDRILL_IGNORE_RECIPIENT_STATUS Renamed to ANYMAIL_IGNORE_RECIPIENT_STATUS (or just
IGNORE_RECIPIENT_STATUS in the ANYMAIL settings dict).

DJRILL_WEBHOOK_SECRET and DJRILL_WEBHOOK_SECRET_NAME Replaced with HTTP basic auth. See Securing
webhooks.

DJRILL_WEBHOOK_SIGNATURE_KEY Use ANYMAIL_MANDRILL_WEBHOOK_KEY instead.

DJRILL_WEBHOOK_URL Often no longer required: Anymail can normally use Django’s HttpRequest.
build_absolute_uri to figure out the complete webhook url that Mandrill called.

If you are experiencing webhook authorization errors, the best solution is to adjust your Django
SECURE_PROXY_SSL_HEADER, USE_X_FORWARDED_HOST, and/or USE_X_FORWARDED_PORT settings to work
with your proxy server. If that’s not possible, you can set ANYMAIL_MANDRILL_WEBHOOK_URL to explicitly
declare the webhook url.

1.5. Supported ESPs 71

https://docs.python.org/3.10/library/stdtypes.html#dict
https://github.com/brack3t/Djrill
https://docs.djangoproject.com/en/stable/ref/request-response/#django.http.HttpRequest.build_absolute_uri
https://docs.djangoproject.com/en/stable/ref/request-response/#django.http.HttpRequest.build_absolute_uri
https://docs.djangoproject.com/en/stable/ref/settings/#std-setting-SECURE_PROXY_SSL_HEADER
https://docs.djangoproject.com/en/stable/ref/settings/#std-setting-USE_X_FORWARDED_HOST
https://docs.djangoproject.com/en/stable/ref/settings/#std-setting-USE_X_FORWARDED_PORT

Anymail Documentation, Release 10.1

Changes to EmailMessage attributes

message.send_at If you are using an aware datetime for send_at, it will keep working unchanged with Anymail.

If you are using a date (without a time), or a naive datetime, be aware that these now default to Django’s cur-
rent_timezone, rather than UTC as in Djrill.

(As with Djrill, it’s best to use an aware datetime that says exactly when you want the message sent.)

message.mandrill_response Anymail normalizes ESP responses, so you don’t have to be familiar with the format
of Mandrill’s JSON. See anymail_status.

The raw ESP response is attached to a sent message as anymail_status.esp_response, so the direct replace-
ment for message.mandrill_response is:

mandrill_response = message.anymail_status.esp_response.json()

message.template_name Anymail renames this to template_id .

message.merge_vars and message.global_merge_vars Anymail renames these to merge_data and
merge_global_data, respectively.

message.use_template_from and message.use_template_subject With Anymail, set message.
from_email = None or message.subject = None to use the values from the stored template.

message.return_path_domain With Anymail, set envelope_sender instead. You’ll need to pass a valid email
address (not just a domain), but Anymail will use only the domain, and will ignore anything before the @.

Other Mandrill-specific attributes Djrill allowed nearly all Mandrill API parameters to be set as attributes directly
on an EmailMessage. With Anymail, you should instead set these in the message’s esp_extra dict as described
above.

Changed in version 10.0: These Djrill-specific attributes are no longer supported, and will be silently ignored.
(Earlier versions raised a DeprecationWarning but still worked.)

You can also use the following git grep expression to find potential problems:

git grep -w \
-e 'async' -e 'auto_html' -e 'auto_text' -e 'from_name' -e 'global_merge_

→˓vars' \
-e 'google_analytics_campaign' -e 'google_analytics_domains' -e 'important

→˓' \
-e 'inline_css' -e 'ip_pool' -e 'merge_language' -e 'merge_vars' \
-e 'preserve_recipients' -e 'recipient_metadata' -e 'return_path_domain' \
-e 'signing_domain' -e 'subaccount' -e 'template_content' -e 'template_

→˓name' \
-e 'tracking_domain' -e 'url_strip_qs' -e 'use_template_from' -e 'use_

→˓template_subject' \
-e 'view_content_link'

Inline images Djrill (incorrectly) used the presence of a Content-ID header to decide whether to treat an image as
inline. Anymail looks for Content-Disposition: inline.

If you were constructing MIMEImage inline image attachments for your Djrill messages, in addition to setting
the Content-ID, you should also add:

image.add_header('Content-Disposition', 'inline')

Or better yet, use Anymail’s new Inline images helper functions to attach your inline images.

72 Chapter 1. Documentation

https://docs.python.org/3.10/library/exceptions.html#DeprecationWarning

Anymail Documentation, Release 10.1

Changes to webhooks

Anymail uses HTTP basic auth as a shared secret for validating webhook calls, rather than Djrill’s “secret” query
parameter. See Securing webhooks. (A slight advantage of basic auth over query parameters is that most logging and
analytics systems are aware of the need to keep auth secret.)

Anymail replaces djrill.signals.webhook_event with anymail.signals.tracking for delivery tracking
events, and anymail.signals.inbound for inbound events. Anymail parses and normalizes the event data passed to
the signal receiver: see Tracking sent mail status and Receiving mail.

The equivalent of Djrill’s data parameter is available to your signal receiver as event.esp_event, and for most
events, the equivalent of Djrill’s event_type parameter is event.esp_event['event']. But consider working with
Anymail’s normalized AnymailTrackingEvent and AnymailInboundEvent instead for easy portability to other
ESPs.

1.5.7 Postal

Anymail integrates with the Postal self-hosted transactional email platform, using their HTTP email API.

Settings

EMAIL_BACKEND

To use Anymail’s Postal backend, set:

EMAIL_BACKEND = "anymail.backends.postal.EmailBackend"

in your settings.py.

POSTAL_API_KEY

Required. A Postal API key.

ANYMAIL = {
...
"POSTAL_API_KEY": "<your api key>",

}

Anymail will also look for POSTAL_API_KEY at the root of the settings file if neither ANYMAIL["POSTAL_API_KEY"]
nor ANYMAIL_POSTAL_API_KEY is set.

POSTAL_API_URL

Required. The base url for calling the Postal API.

1.5. Supported ESPs 73

https://postal.atech.media/
https://github.com/postalhq/postal/wiki/Using-the-API

Anymail Documentation, Release 10.1

POSTAL_WEBHOOK_KEY

Required when using status tracking or inbound webhooks.

This should be set to the public key of the Postal instance. You can find it by running postal default-dkim-record
on your Postal instance. Use the part that comes after p=, until the semicolon at the end.

esp_extra support

To use Postal features not directly supported by Anymail, you can set a message’s esp_extra to a dict that will be
merged into the json sent to Postal’s email API.

Example:

message.esp_extra = {
'HypotheticalFuturePostalParam': '2022', # merged into send params

}

(You can also set "esp_extra" in Anymail’s global send defaults to apply it to all messages.)

Limitations and quirks

Postal does not support a few tracking and reporting additions offered by other ESPs.

Anymail normally raises an AnymailUnsupportedFeature error when you try to send a message using features that
Postal doesn’t support You can tell Anymail to suppress these errors and send the messages anyway – see Unsupported
features.

Single tag Postal allows a maximum of one tag per message. If your message has two or more tags, you’ll get
an AnymailUnsupportedFeature error—or if you’ve enabled ANYMAIL_IGNORE_UNSUPPORTED_FEATURES,
Anymail will use only the first tag.

No delayed sending Postal does not support send_at.

Toggle click-tracking and open-tracking By default, Postal does not enable click-tracking and open-tracking. To
enable it, see their docs on click- & open-tracking. Anymail’s track_clicks and track_opens settings are
unsupported.

Attachments must be named Postal issues an AttachmentMissingName error when trying to send an attachment
without name.

Batch sending/merge and ESP templates

Postal does not support batch sending or ESP templates.

Status tracking webhooks

If you are using Anymail’s normalized status tracking, set up a webhook in your Postal mail server settings, under
Webhooks. The webhook URL is:

https://yoursite.example.com/anymail/postal/tracking/

• yoursite.example.com is your Django site

74 Chapter 1. Documentation

https://docs.python.org/3.10/library/stdtypes.html#dict
https://krystal.github.io/postal-api/controllers/send/message
https://github.com/postalhq/postal/wiki/Click-&-Open-Tracking

Anymail Documentation, Release 10.1

Choose all the event types you want to receive.

Postal signs its webhook payloads. You need to set ANYMAIL_POSTAL_WEBHOOK_KEY .

If you use multiple Postal mail servers, you’ll need to repeat entering the webhook settings for each of them.

Postal will report these Anymail event_types: failed, bounced, deferred, queued, delivered, clicked.

The event’s esp_event field will be a dict of Postal’s webhook data.

Inbound webhook

If you want to receive email from Postal through Anymail’s normalized inbound handling, follow Postal’s guide to for
receiving emails (Help > Receiving Emails) to create an incoming route. Then set up an HTTP Endpoint, pointing to
Anymail’s inbound webhook.

The url will be:

https://yoursite.example.com/anymail/postal/inbound/

• yoursite.example.com is your Django site

Set Format to Delivered as the raw message.

You also need to set ANYMAIL_POSTAL_WEBHOOK_KEY to enable signature validation.

1.5.8 Postmark

Anymail integrates with the Postmark transactional email service, using their HTTP email API.

Settings

EMAIL_BACKEND

To use Anymail’s Postmark backend, set:

EMAIL_BACKEND = "anymail.backends.postmark.EmailBackend"

in your settings.py.

POSTMARK_SERVER_TOKEN

Required. A Postmark server token.

ANYMAIL = {
...
"POSTMARK_SERVER_TOKEN": "<your server token>",

}

Anymail will also look for POSTMARK_SERVER_TOKEN at the root of the settings file if neither
ANYMAIL["POSTMARK_SERVER_TOKEN"] nor ANYMAIL_POSTMARK_SERVER_TOKEN is set.

You can override the server token for an individual message in its esp_extra.

1.5. Supported ESPs 75

https://docs.python.org/3.10/library/stdtypes.html#dict
https://github.com/postalhq/postal/wiki/Webhook-Events-&-Payloads
https://postmarkapp.com/
https://postmarkapp.com/developer/api/email-api

Anymail Documentation, Release 10.1

POSTMARK_API_URL

The base url for calling the Postmark API.

The default is POSTMARK_API_URL = "https://api.postmarkapp.com/" (It’s unlikely you would need to change
this.)

esp_extra support

To use Postmark features not directly supported by Anymail, you can set a message’s esp_extra to a dict that will
be merged into the json sent to Postmark’s email API.

Example:

message.esp_extra = {
'MessageStream': 'marketing', # send using specific message stream ID
'server_token': '<API server token for just this message>',

}

(You can also set "esp_extra" in Anymail’s global send defaults to apply it to all messages.)

Limitations and quirks

Postmark does not support a few tracking and reporting additions offered by other ESPs.

Anymail normally raises an AnymailUnsupportedFeature error when you try to send a message using features
that Postmark doesn’t support You can tell Anymail to suppress these errors and send the messages anyway – see
Unsupported features.

Single tag Postmark allows a maximum of one tag per message. If your message has two or more tags, you’ll get
an AnymailUnsupportedFeature error—or if you’ve enabled ANYMAIL_IGNORE_UNSUPPORTED_FEATURES,
Anymail will use only the first tag.

No delayed sending Postmark does not support send_at.

Click-tracking Postmark supports several link-tracking options. Anymail treats track_clicks as Postmark’s “Htm-
lAndText” option when True.

If you would prefer Postmark’s “HtmlOnly” or “TextOnly” link-tracking, you could either set that as a Postmark
server-level default (and use message.track_clicks = False to disable tracking for specific messages), or
use something like message.esp_extra = {'TrackLinks': "HtmlOnly"} to specify a particular option.

Open-tracking To control track_opens on individual messages, you must disable Postmark’s server-level de-
fault and then set track_opens = True on all messages that should have open tracking. (A message-level
track_opens = False cannot override open tracking if enabled in Postmark’s server defaults.)

If most of your messages should be sent with open tracking, you can use Anymail’s global send defaults (rather
than Postmark’s server-level setting):

settings.py
ANYMAIL = {

...
"SEND_DEFAULTS": { "track_opens": True },

}

Individual messages can then use track_opens = False to override Anymail’s default.

76 Chapter 1. Documentation

https://docs.python.org/3.10/library/stdtypes.html#dict
https://postmarkapp.com/developer/api/email-api
https://postmarkapp.com/developer/user-guide/tracking-links#enabling-link-tracking
https://postmarkapp.com/developer/user-guide/tracking-opens/tracking-opens-per-email

Anymail Documentation, Release 10.1

No envelope sender overrides Postmark does not support overriding envelope_sender on individual messages.
(You can configure custom return paths for each sending domain in the Postmark control panel.)

Batch sending/merge and ESP templates

Postmark offers both ESP stored templates and batch sending with per-recipient merge data.

Changed in version 4.2: Added Postmark merge_data and batch sending support. (Earlier Anymail releases only
supported merge_global_data with Postmark.)

To use a Postmark template, set the message’s template_id to either the numeric Postmark “TemplateID” or its
string “TemplateAlias” (which is not the template’s name). You can find a template’s numeric id near the top right in
Postmark’s template editor, and set the alias near the top right above the name.

Changed in version 5.0: Earlier Anymail releases only allowed numeric template IDs.

Supply the Postmark “TemplateModel” variables using Anymail’s normalized merge_data and merge_global_data
message attributes:

message = EmailMessage(
(subject and body come from the template, so don't include those)
to=["alice@example.com", "Bob <bob@example.com>"]

)
message.template_id = 80801 # Postmark template id or alias
message.merge_data = {

'alice@example.com': {'name': "Alice", 'order_no': "12345"},
'bob@example.com': {'name': "Bob", 'order_no': "54321"},

}
message.merge_global_data = {

'ship_date': "May 15",
}

Postmark does not allow overriding the message’s subject or body with a template. (You can customize the subject by
including variables in the template’s subject.)

When you supply per-recipient merge_data, Anymail automatically switches to Postmark’s batch send API, so that
each “to” recipient sees only their own email address. (Any cc’s or bcc’s will be duplicated for every to-recipient.)

If you want to use batch sending with a regular message (without a template), set merge data to an empty dict: message.
merge_data = {}.

See this Postmark blog post on templates for more information.

Status tracking webhooks

If you are using Anymail’s normalized status tracking, set up a webhook in your Postmark account settings, under
Servers > your server name > Settings > Webhooks. The webhook URL is:

https://random:random@yoursite.example.com/anymail/postmark/tracking/

• random:random is an ANYMAIL_WEBHOOK_SECRET shared secret

• yoursite.example.com is your Django site

Choose all the event types you want to receive. Anymail doesn’t care about the “include messsage content” and “post
only on first open” options; whether to use them is your choice.

If you use multiple Postmark servers, you’ll need to repeat entering the webhook settings for each of them.

1.5. Supported ESPs 77

https://postmarkapp.com/blog/special-delivery-postmark-templates
https://account.postmarkapp.com/servers

Anymail Documentation, Release 10.1

Postmark will report these Anymail event_types: rejected, failed, bounced, deferred, delivered, autoresponded,
opened, clicked, complained, unsubscribed, subscribed. (Postmark does not support sent–what it calls “pro-
cessed”–events through webhooks.)

The event’s esp_event field will be a dict of Postmark delivery, bounce, spam-complaint, open-tracking, or click
data.

Inbound webhook

To receive email from Postmark through Anymail’s normalized inbound handling, follow Postmark’s guide to Configure
an inbound server that posts to Anymail’s inbound webhook.

In their step 4, set the inbound webhook URL to:

https://random:random@yoursite.example.com/anymail/postmark/inbound/

• random:random is an ANYMAIL_WEBHOOK_SECRET shared secret

• yoursite.example.com is your Django site

We recommend enabling the “Include raw email content in JSON payload” checkbox. Anymail’s inbound handling
supports either choice, but raw email is preferred to get the most accurate representation of any received message. (If
you are using Postmark’s server API, this is the RawEmailEnabled option.)

Changed in version 10.0: Added handling for Postmark’s “include raw email content”.

You may also want to read through the “Inbound domain forwarding” and “Configure inbound blocking” sections of
Postmark’s Inbound Processing guide.

1.5.9 SendGrid

Anymail integrates with the SendGrid email service, using their Web API v3.

Important: Troubleshooting: If your SendGrid messages aren’t being delivered as expected, be sure to look for
“drop” events in your SendGrid activity feed.

SendGrid detects certain types of errors only after the send API call appears to succeed, and reports these errors as
drop events.

Settings

EMAIL_BACKEND

To use Anymail’s SendGrid backend, set:

EMAIL_BACKEND = "anymail.backends.sendgrid.EmailBackend"

in your settings.py.

78 Chapter 1. Documentation

https://docs.python.org/3.10/library/stdtypes.html#dict
https://postmarkapp.com/developer/webhooks/delivery-webhook
https://postmarkapp.com/developer/webhooks/bounce-webhook
https://postmarkapp.com/developer/webhooks/spam-complaint-webhook
https://postmarkapp.com/developer/webhooks/open-tracking-webhook
https://postmarkapp.com/developer/webhooks/click-webhook
https://postmarkapp.com/developer/user-guide/inbound/configure-an-inbound-server
https://postmarkapp.com/developer/user-guide/inbound/configure-an-inbound-server
https://postmarkapp.com/developer/user-guide/inbound
https://sendgrid.com/
https://sendgrid.com/docs/API_Reference/Web_API_v3/Mail/index.html
https://app.sendgrid.com/email_activity?events=drops

Anymail Documentation, Release 10.1

SENDGRID_API_KEY

A SendGrid API key with “Mail Send” permission. (Manage API keys in your SendGrid API key settings.) Required.

ANYMAIL = {
...
"SENDGRID_API_KEY": "<your API key>",

}

Anymail will also look for SENDGRID_API_KEY at the root of the settings file if neither
ANYMAIL["SENDGRID_API_KEY"] nor ANYMAIL_SENDGRID_API_KEY is set.

SENDGRID_GENERATE_MESSAGE_ID

Whether Anymail should generate a UUID for each message sent through SendGrid, to facilitate status track-
ing. The UUID is attached to the message as a SendGrid custom arg named “anymail_id” and made available as
anymail_status.message_id on the sent message.

Default True. You can set to False to disable this behavior, in which case sent messages will have a message_id of
None. See Message-ID quirks below.

SENDGRID_MERGE_FIELD_FORMAT

If you use merge data with SendGrid’s legacy transactional templates, set this to a str.format() formatting string
that indicates how merge fields are delimited in your legacy templates. For example, if your templates use the -field-
hyphen delimiters suggested in some SendGrid docs, you would set:

ANYMAIL = {
...
"SENDGRID_MERGE_FIELD_FORMAT": "-{}-",

}

The placeholder {} will become the merge field name. If you need to include a literal brace character, double it up.
(For example, Handlebars-style {{field}} delimiters would take the format string "{{{{{}}}}}".)

The default None requires you include the delimiters directly in your merge_data keys. You can also override this
setting for individual messages. See the notes on SendGrid templates and merge below.

This setting is not used (or necessary) with SendGrid’s newer dynamic transactional templates, which always use
Handlebars syntax.

SENDGRID_API_URL

The base url for calling the SendGrid API.

The default is SENDGRID_API_URL = "https://api.sendgrid.com/v3/" (It’s unlikely you would need to change
this.)

1.5. Supported ESPs 79

https://app.sendgrid.com/settings/api_keys
https://docs.python.org/3.10/library/stdtypes.html#str.format
https://docs.python.org/3.10/library/constants.html#None

Anymail Documentation, Release 10.1

esp_extra support

To use SendGrid features not directly supported by Anymail, you can set a message’s esp_extra to a dict of param-
eters for SendGrid’s v3 Mail Send API. Your esp_extra dict will be deeply merged into the parameters Anymail has
constructed for the send, with esp_extra having precedence in conflicts.

Anymail has special handling for esp_extra["personalizations"]. If that value is a dict, Anymail will merge
that personalizations dict into the personalizations for each message recipient. (If you pass a list, that will override
the personalizations Anymail normally constructs from the message, and you will need to specify each recipient in the
personalizations list yourself.)

Example:

message.open_tracking = True
message.esp_extra = {

"asm": { # SendGrid subscription management
"group_id": 1,
"groups_to_display": [1, 2, 3],

},
"tracking_settings": {

"open_tracking": {
Anymail will automatically set `"enable": True` here,
based on message.open_tracking.
"substitution_tag": "%%OPEN_TRACKING_PIXEL%%",

},
},
Because "personalizations" is a dict, Anymail will merge "future_feature"
into the SendGrid personalizations array for each message recipient
"personalizations": {

"future_feature": {"future": "data"},
},

}

(You can also set "esp_extra" in Anymail’s global send defaults to apply it to all messages.)

Limitations and quirks

Message-ID SendGrid does not return any sort of unique id from its send API call. Knowing a sent message’s ID can
be important for later queries about the message’s status.

To work around this, Anymail generates a UUID for each outgoing message, provides it to SendGrid as a custom
arg named “anymail_id” and makes it available as the message’s anymail_status.message_id attribute after
sending. The same UUID will be passed to Anymail’s tracking webhooks as event.message_id .

To disable attaching tracking UUIDs to sent messages, set SENDGRID_GENERATE_MESSAGE_ID to False in your
Anymail settings.

Changed in version 6.0: In batch sends, Anymail generates a distinct anymail_id for each “to” recipient. (Pre-
viously, a single id was used for all batch recipients.) Check anymail_status.recipients[to_email].
message_id for individual batch-send tracking ids.

Changed in version 3.0: Previously, Anymail generated a custom Message-ID header for each sent message.
But SendGrid’s “smtp-id” event field does not reliably reflect this header, which complicates status tracking. (For
compatibility with messages sent in earlier versions, Anymail’s webhook message_idwill fall back to “smtp-id”
when “anymail_id” isn’t present.)

80 Chapter 1. Documentation

https://docs.python.org/3.10/library/stdtypes.html#dict
https://sendgrid.com/docs/API_Reference/Web_API_v3/Mail/index.html#-Request-Body-Parameters
https://docs.python.org/3.10/library/stdtypes.html#dict
https://docs.python.org/3.10/library/stdtypes.html#list

Anymail Documentation, Release 10.1

Invalid Addresses SendGrid will accept and send just about anything as a message’s from_email. (And email pro-
tocols are actually OK with that.)

(Tested March, 2016)

Wrong character set on text attachments Under some conditions, SendGrid incorrectly identifies text attachments
(text/plain, text/calendar, etc.) as using ISO-8859-1 encoding, and forces charset="iso-8859-1" into the
attachments’ MIME headers. This generally causes any non-ASCII characters in the attachments to be replaced
with incorrect or illegal characters in the recipient’s email client.

The behavior is unpredictable, and may vary by SendGrid account or change over time. There is no reliable,
general workaround that Anymail could implement. You may be able to counteract the issue by enabling open
and/or click tracking in your SendGrid account. The only way to completely avoid the problem is switching to a
non-text attachment type (e.g., application/pdf) or limiting your text attachments to use only ASCII characters.
See issue 150 for more information and other possible workarounds.

If this impacts your usage, it’s helpful to report it to SendGrid support, so they can quantify customers affected
and prioritize a fix.

(Noted June, 2019 and December, 2019)

Arbitrary alternative parts allowed SendGrid is one of the few ESPs that does support sending arbitrary alternative
message parts (beyond just a single text/plain and text/html part).

AMP for Email SendGrid supports sending AMPHTML email content. To include it, use message.
attach_alternative("...AMPHTML content...", "text/x-amp-html") (and be sure to also include
regular HTML and text bodies, too).

No envelope sender overrides SendGrid does not support overriding envelope_sender on individual messages.

Batch sending/merge and ESP templates

SendGrid offers both ESP stored templates and batch sending with per-recipient merge data.

SendGrid has two types of stored templates for transactional email:

• Dynamic transactional templates, which were introduced in July, 2018, use Handlebars template syntax and allow
complex logic to be coded in the template itself.

• Legacy transactional templates, which allow only simple key-value substitution and don’t specify a particular
template syntax.

[Legacy templates were originally just called “transactional templates,” and many older references still use this termi-
nology. But confusingly, SendGrid’s dashboard and some recent articles now use “transactional templates” to mean
the newer, dynamic templates.]

Changed in version 4.1: Added support for SendGrid dynamic transactional templates. (Earlier Anymail releases work
only with SendGrid’s legacy transactional templates.)

You can use either type of SendGrid stored template by setting a message’s template_id to the template’s unique
id (not its name). Supply the merge data values with Anymail’s normalized merge_data and merge_global_data
message attributes.

message = EmailMessage(
...
omit subject and body (or set to None) to use template content
to=["alice@example.com", "Bob <bob@example.com>"]

)
message.template_id = "d-5a963add2ec84305813ff860db277d7a" # SendGrid dynamic␣
→˓id

(continues on next page)

1.5. Supported ESPs 81

https://github.com/anymail/django-anymail/issues/150

Anymail Documentation, Release 10.1

(continued from previous page)

message.merge_data = {
'alice@example.com': {'name': "Alice", 'order_no': "12345"},
'bob@example.com': {'name': "Bob", 'order_no': "54321"},

}
message.merge_global_data = {

'ship_date': "May 15",
}

When you supply per-recipient merge_data, Anymail automatically changes how it communicates the “to” list to
SendGrid, so that each recipient sees only their own email address. (Anymail creates a separate “personalization” for
each recipient in the “to” list; any cc’s or bcc’s will be duplicated for every to-recipient.)

See the SendGrid’s transactional template overview for more information.

Legacy transactional templates

With legacy transactional templates (only), SendGrid doesn’t have a pre-defined merge field syntax, so you must tell
Anymail how substitution fields are delimited in your templates. There are three ways you can do this:

• Set 'merge_field_format' in the message’s esp_extra to a python str.format() string, as
shown in the example below. (This applies only to that particular EmailMessage.)

• Or set SENDGRID_MERGE_FIELD_FORMAT in your Anymail settings. This is usually the best ap-
proach, and will apply to all legacy template messages sent through SendGrid. (You can still use
esp_extra to override for individual messages.)

• Or include the field delimiters directly in all your merge_data and merge_global_data keys. E.g.:
{'-name-': "Alice", '-order_no-': "12345"}. (This can be error-prone, and makes it
difficult to transition to other ESPs or to SendGrid’s dynamic templates.)

...
message.template_id = "5997fcf6-2b9f-484d-acd5-7e9a99f0dc1f" # SendGrid␣
→˓legacy id
message.merge_data = {

'alice@example.com': {'name': "Alice", 'order_no': "12345"},
'bob@example.com': {'name': "Bob", 'order_no': "54321"},

}
message.esp_extra = {

Tell Anymail this SendGrid legacy template uses "-field-" for merge␣
→˓fields.
(You could instead set SENDGRID_MERGE_FIELD_FORMAT in your ANYMAIL␣

→˓settings.)
'merge_field_format': "-{}-"

}

SendGrid legacy templates allow you to mix your EmailMessage’s subject and body with the template subject and
body (by using <%subject%> and <%body%> in your SendGrid template definition where you want the message-specific
versions to appear). If you don’t want to supply any additional subject or body content from your Django app, set those
EmailMessage attributes to empty strings or None.

82 Chapter 1. Documentation

https://sendgrid.com/docs/ui/sending-email/create-and-edit-transactional-templates/
https://docs.python.org/3.10/library/stdtypes.html#str.format
https://docs.python.org/3.10/library/constants.html#None

Anymail Documentation, Release 10.1

On-the-fly templates

Rather than define a stored ESP template, you can refer to merge fields directly in an EmailMessage’s subject and body,
and SendGrid will treat this as an on-the-fly, legacy-style template definition. (The on-the-fly template can’t contain
any dynamic template logic, and like any legacy template you must specify the merge field format in either Anymail
settings or esp_extra as described above.)

on-the-fly template using merge fields in subject and body:
message = EmailMessage(

subject="Your order {{order_no}} has shipped",
body="Dear {{name}}:\nWe've shipped order {{order_no}}.",
to=["alice@example.com", "Bob <bob@example.com>"]

)
note: no template_id specified
message.merge_data = {

'alice@example.com': {'name': "Alice", 'order_no': "12345"},
'bob@example.com': {'name': "Bob", 'order_no': "54321"},

}
message.esp_extra = {

here's how to get Handlebars-style {{merge}} fields with Python's str.
→˓format:
'merge_field_format': "{{{{{}}}}}" # "{{ {{ {} }} }}" without the spaces

}

Status tracking webhooks

If you are using Anymail’s normalized status tracking, enter the url in your SendGrid mail settings, under “Event
Notification”:

https://random:random@yoursite.example.com/anymail/sendgrid/tracking/

• random:random is an ANYMAIL_WEBHOOK_SECRET shared secret

• yoursite.example.com is your Django site

Be sure to check the boxes in the SendGrid settings for the event types you want to receive.

SendGrid will report these Anymail event_types: queued, rejected, bounced, deferred, delivered, opened, clicked,
complained, unsubscribed, subscribed.

The event’s esp_event field will be a dict of Sendgrid event fields, for a single event. (Although SendGrid calls
webhooks with batches of events, Anymail will invoke your signal receiver separately for each event in the batch.)

Inbound webhook

If you want to receive email from SendGrid through Anymail’s normalized inbound handling, follow SendGrid’s In-
bound Parse Webhook guide to set up Anymail’s inbound webhook.

The Destination URL setting will be:

https://random:random@yoursite.example.com/anymail/sendgrid/inbound/

• random:random is an ANYMAIL_WEBHOOK_SECRET shared secret

• yoursite.example.com is your Django site

1.5. Supported ESPs 83

https://app.sendgrid.com/settings/mail_settings
https://docs.python.org/3.10/library/stdtypes.html#dict
https://sendgrid.com/docs/API_Reference/Webhooks/event.html
https://sendgrid.com/docs/Classroom/Basics/Inbound_Parse_Webhook/setting_up_the_inbound_parse_webhook.html
https://sendgrid.com/docs/Classroom/Basics/Inbound_Parse_Webhook/setting_up_the_inbound_parse_webhook.html

Anymail Documentation, Release 10.1

You should enable SendGrid’s “POST the raw, full MIME message” checkbox (see note below). And be sure the URL
has a trailing slash. (SendGrid’s inbound processing won’t follow Django’s APPEND_SLASH redirect.)

If you want to use Anymail’s normalized spam_detected and spam_score attributes, be sure to enable the “Check
incoming emails for spam” checkbox.

Note: Anymail supports either option for SendGrid’s “POST the raw, full MIME message” checkbox, but enabling
this setting is preferred to get the most accurate representation of any received email. Using raw MIME also avoids a
limitation in Django’s multipart/form-data handling that can strip attachments with certain filenames.

Changed in version 8.6: Leaving SendGrid’s “full MIME” checkbox disabled is no longer recommended.

1.5.10 SparkPost

Anymail integrates with the SparkPost email service, using their Transmissions API.

Changed in version 8.0: Earlier Anymail versions used the official Python sparkpost API client. That library is no longer
maintained, and Anymail now calls SparkPost’s HTTP API directly. This change should not affect most users, but you
should make sure you provide SPARKPOST_API_KEY in your Anymail settings (Anymail doesn’t check environment
variables), and if you are using Anymail’s esp_extra you will need to update that to use Transmissions API parameters.

Settings

EMAIL_BACKEND

To use Anymail’s SparkPost backend, set:

EMAIL_BACKEND = "anymail.backends.sparkpost.EmailBackend"

in your settings.py.

SPARKPOST_API_KEY

A SparkPost API key with at least the “Transmissions: Read/Write” permission. (Manage API keys in your SparkPost
account API keys.)

ANYMAIL = {
...
"SPARKPOST_API_KEY": "<your API key>",

}

Anymail will also look for SPARKPOST_API_KEY at the root of the settings file if neither
ANYMAIL["SPARKPOST_API_KEY"] nor ANYMAIL_SPARKPOST_API_KEY is set.

Changed in version 8.0: This setting is required. If you store your API key in an environment variable, load it into
your Anymail settings: "SPARKPOST_API_KEY": os.environ["SPARKPOST_API_KEY"]. (Earlier Anymail re-
leases used the SparkPost Python library, which would look for the environment variable.)

84 Chapter 1. Documentation

https://docs.djangoproject.com/en/stable/ref/settings/#std-setting-APPEND_SLASH
https://www.sparkpost.com/
https://developers.sparkpost.com/api/transmissions/
https://pypi.org/project/sparkpost/
https://app.sparkpost.com/account/credentials
https://app.sparkpost.com/account/credentials

Anymail Documentation, Release 10.1

SPARKPOST_SUBACCOUNT

New in version 8.0.

An optional SparkPost subaccount numeric id. This can be used, along with the API key for the master account, to
send mail on behalf of a subaccount. (Do not set this when using a subaccount’s own API key.)

Like all Anymail settings, you can include this in the global settings.py ANYMAIL dict to apply to all sends, or supply
it as a get_connection() keyword parameter (connection = get_connection(subaccount=123)) to send a
particular message with a subaccount. See Mixing email backends for more information on using connections.

SPARKPOST_API_URL

The SparkPost API Endpoint to use. The default is "https://api.sparkpost.com/api/v1".

Set this to use a SparkPost EU account, or to work with any other API endpoint including SparkPost Enterprise API
and SparkPost Labs.

ANYMAIL = {
...
"SPARKPOST_API_URL": "https://api.eu.sparkpost.com/api/v1", # use␣

→˓SparkPost EU
}

You must specify the full, versioned API endpoint as shown above (not just the base_uri).

SPARKPOST_TRACK_INITIAL_OPEN_AS_OPENED

New in version 8.1.

Boolean, default False. When using Anymail’s tracking webhooks, whether to report SparkPost’s “Initial Open” event
as an Anymail normalized “opened” event. (SparkPost’s “Open” event is always normalized to Anymail’s “opened”
event. See Status tracking webhooks below.)

esp_extra support

To use SparkPost features not directly supported by Anymail, you can set a message’s esp_extra to a dict of transmis-
sions API request body data. Anymail will deeply merge your overrides into the normal API payload it has constructed,
with esp_extra taking precedence in conflicts.

Example (you probably wouldn’t combine all of these options at once):

message.esp_extra = {
"options": {

Treat as transactional for unsubscribe and suppression:
"transactional": True,
Override your default dedicated IP pool:
"ip_pool": "transactional_pool",

},
Add a description:
"description": "Test-run for new templates",
"content": {

Use draft rather than published template:
"use_draft_template": True,

(continues on next page)

1.5. Supported ESPs 85

https://www.sparkpost.com/docs/user-guide/subaccounts/
https://docs.djangoproject.com/en/stable/topics/email/#django.core.mail.get_connection
https://developers.sparkpost.com/api/index.html#header-api-endpoints
https://docs.python.org/3.10/library/stdtypes.html#dict
https://developers.sparkpost.com/api/transmissions/#header-request-body
https://developers.sparkpost.com/api/transmissions/#header-request-body

Anymail Documentation, Release 10.1

(continued from previous page)

Use an A/B test:
"ab_test_id": "highlight_support_links",

},
Use a stored recipients list (overrides message to/cc/bcc):
"recipients": {

"list_id": "design_team"
},

}

Note that including "recipients" in esp_extra will completely override the recipients list Anymail generates from
your message’s to/cc/bcc fields, along with any per-recipient merge_data and merge_metadata.

(You can also set "esp_extra" in Anymail’s global send defaults to apply it to all messages.)

Limitations and quirks

Anymail’s `message_id` is SparkPost’s `transmission_id` The message_id Anymail sets on a message’s
anymail_status and in normalized webhook AnymailTrackingEvent data is actually what SparkPost calls
“transmission_id”.

Like Anymail’s message_id for other ESPs, SparkPost’s transmission_id (together with the recipient email ad-
dress), uniquely identifies a particular message instance in tracking events.

(The transmission_id is the only unique identifier available when you send your message. SparkPost also has
something called “message_id”, but that doesn’t get assigned until after the send API call has completed.)

If you are working exclusively with Anymail’s normalized message status and webhook events, the distinction
won’t matter: you can consistently use Anymail’s message_id. But if you are also working with raw web-
hook esp_event data or SparkPost’s events API, be sure to think “transmission_id” wherever you’re speaking to
SparkPost.

Single tag Anymail uses SparkPost’s “campaign_id” to implement message tagging. SparkPost only allows a single
campaign_id per message. If your message has two or more tags, you’ll get an AnymailUnsupportedFeature
error—or if you’ve enabled ANYMAIL_IGNORE_UNSUPPORTED_FEATURES, Anymail will use only the first tag.

(SparkPost’s “recipient tags” are not available for tagging messages. They’re associated with individual addresses
in stored recipient lists.)

AMP for Email SparkPost supports sending AMPHTML email content. To include it, use message.
attach_alternative("...AMPHTML content...", "text/x-amp-html") (and be sure to also include
regular HTML and/or text bodies, too).

New in version 8.0.

Envelope sender may use domain only Anymail’s envelope_sender is used to populate SparkPost’s
'return_path' parameter. Anymail supplies the full email address, but depending on your SparkPost
configuration, SparkPost may use only the domain portion and substitute its own encoded mailbox before the @.

Multiple from_email addresses Prior to November, 2020, SparkPost supporting sending messages with multiple
From addresses. (This is technically allowed by email specs, but many ISPs bounce such messages.) Anymail
v8.1 and earlier will pass multiple from_email addresses to SparkPost’s API.

SparkPost has since dropped support for more than one from address, and now issues error code 7001 “No
sending domain specified”. To avoid confusion, Anymail v8.2 treats multiple from addresses as an unsupported
feature in the SparkPost backend.

Changed in version 8.2.

86 Chapter 1. Documentation

Anymail Documentation, Release 10.1

Batch sending/merge and ESP templates

SparkPost offers both ESP stored templates and batch sending with per-recipient merge data.

You can use a SparkPost stored template by setting a message’s template_id to the template’s unique id. (When
using a stored template, SparkPost prohibits setting the EmailMessage’s subject, text body, or html body.)

Alternatively, you can refer to merge fields directly in an EmailMessage’s subject, body, and other fields—the message
itself is used as an on-the-fly template.

In either case, supply the merge data values with Anymail’s normalized merge_data and merge_global_data mes-
sage attributes.

message = EmailMessage(
...
to=["alice@example.com", "Bob <bob@example.com>"]

)
message.template_id = "11806290401558530" # SparkPost id
message.merge_data = {

'alice@example.com': {'name': "Alice", 'order_no': "12345"},
'bob@example.com': {'name': "Bob", 'order_no': "54321"},

}
message.merge_global_data = {

'ship_date': "May 15",
Can use SparkPost's special "dynamic" keys for nested substitutions (see␣

→˓notes):
'dynamic_html': {

'status_html': "Status
→˓",

},
'dynamic_plain': {

'status_plain': "Status: https://example.com/order/{{order_no}}",
},

}

See SparkPost’s substitutions reference for more information on templates and batch send with SparkPost. If you need
the special “dynamic” keys for nested substitutions, provide them in Anymail’s merge_global_data as shown in the
example above. And if you want use_draft_template behavior, specify that in esp_extra.

Status tracking webhooks

If you are using Anymail’s normalized status tracking, set up the webhook in your SparkPost configuration under
“Webhooks”:

• Target URL: https://yoursite.example.com/anymail/sparkpost/tracking/

• Authentication: choose “Basic Auth.” For username and password enter the two halves of the random:random
shared secret you created for your ANYMAIL_WEBHOOK_SECRET Django setting. (Anymail doesn’t support OAuth
webhook auth.)

• Events: you can leave “All events” selected, or choose “Select individual events” to pick the specific events you’re
interested in tracking.

SparkPost will report these Anymail event_types: queued, rejected, bounced, deferred, delivered, opened, clicked,
complained, unsubscribed, subscribed.

1.5. Supported ESPs 87

https://developers.sparkpost.com/api/substitutions-reference
https://developers.sparkpost.com/api/substitutions-reference#header-links-and-substitution-expressions-within-substitution-values
https://app.sparkpost.com/webhooks
https://app.sparkpost.com/webhooks

Anymail Documentation, Release 10.1

By default, Anymail reports SparkPost’s “Open”—but not its “Initial Open”—event as Anymail’s normalized “opened”
event_type. This avoids duplicate “opened” events when both SparkPost types are enabled.

New in version 8.1: To receive SparkPost “Initial Open” events as Anymail’s “opened”, set
"SPARKPOST_TRACK_INITIAL_OPEN_AS_OPENED": True in your ANYMAIL settings dict. You will proba-
bly want to disable SparkPost “Open” events when using this setting.

Changed in version 8.1: SparkPost’s “AMP Click” and “AMP Open” are reported as Anymail’s “clicked” and “opened”
events. If you enable the SPARKPOST_TRACK_INITIAL_OPEN_AS_OPENED setting, “AMP Initial Open” will
also map to “opened.” (Earlier Anymail releases reported all AMP events as “unknown”.)

The event’s esp_event field will be a single, raw SparkPost event. (Although SparkPost calls webhooks with batches
of events, Anymail will invoke your signal receiver separately for each event in the batch.) The esp_event is the
raw, wrapped json event structure as provided by SparkPost: {'msys': {'<event_category>': {...<actual
event data>...}}}.

Inbound webhook

If you want to receive email from SparkPost through Anymail’s normalized inbound handling, follow SparkPost’s
Enabling Inbound Email Relaying guide to set up Anymail’s inbound webhook.

The target parameter for the Relay Webhook will be:

https://random:random@yoursite.example.com/anymail/sparkpost/inbound/

• random:random is an ANYMAIL_WEBHOOK_SECRET shared secret

• yoursite.example.com is your Django site

1.5.11 Anymail feature support

The table below summarizes the Anymail features supported for each ESP.

88 Chapter 1. Documentation

https://developers.sparkpost.com/api/webhooks/#header-webhook-event-types
https://www.sparkpost.com/docs/tech-resources/inbound-email-relay-webhook/

Anymail Documentation, Release 10.1

Email
Ser-
vice
Provider

Ama-
zon
SES

Brevo Mail-
erSend

Mail-
gun

Mailjet Man-
drill

Postal Post-
mark

Send-
Grid

Spark-
Post

Anymail send options

envelope_senderYes No No Do-
main
only

Yes Do-
main
only

Yes No No Yes

metadataYes Yes No Yes Yes Yes No Yes Yes Yes
merge_metadataNo No No Yes Yes Yes No Yes Yes Yes
send_at No Yes Yes Yes No Yes No No Yes Yes
tags Yes Yes Yes Yes Max 1

tag
Yes Max 1

tag
Max 1
tag

Yes Max 1
tag

track_clicksNo No Yes Yes Yes Yes No Yes Yes Yes
track_opensNo No Yes Yes Yes Yes No Yes Yes Yes
AMP
Email

Yes No No Yes No No No No Yes Yes

Batch sending/merge and ESP templates

template_idYes Yes Yes Yes Yes Yes No Yes Yes Yes
merge_dataYes No Yes Yes Yes Yes No Yes Yes Yes
merge_global_dataYes Yes (emu-

lated)
(emu-
lated)

Yes Yes No Yes Yes Yes

Status and event tracking

anymail_statusYes Yes Yes Yes Yes Yes Yes Yes Yes Yes
AnymailTrackingEvent
from
web-
hooks

Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes

Inbound handling

AnymailInboundEvent
from
web-
hooks

Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes

Trying to choose an ESP? Please don’t start with this table. It’s far more important to consider things like an ESP’s
deliverability stats, latency, uptime, and support for developers. The number of extra features an ESP offers is almost
meaningless. (And even specific features don’t matter if you don’t plan to use them.)

1.5. Supported ESPs 89

Anymail Documentation, Release 10.1

1.5.12 Other ESPs

Don’t see your favorite ESP here? Anymail is designed to be extensible. You can suggest that Anymail add an ESP, or
even contribute your own implementation to Anymail. See Contributing.

1.6 Tips, tricks, and advanced usage

Some suggestions and recipes for getting things done with Anymail:

1.6.1 Handling transient errors

Applications using Anymail need to be prepared to deal with connectivity issues and other transient errors from your
ESP’s API (as with any networked API).

Because Django doesn’t have a built-in way to say “try this again in a few moments,” Anymail doesn’t have its own
logic to retry network errors. The best way to handle transient ESP errors depends on your Django project:

• If you already use something like celery or Django channels for background task scheduling, that’s usually the
best choice for handling Anymail sends. Queue a task for every send, and wait to mark the task complete until
the send succeeds (or repeatedly fails, according to whatever logic makes sense for your app).

• Another option is the Pinax django-mailer package, which queues and automatically retries failed sends for any
Django EmailBackend, including Anymail. django-mailer maintains its send queue in your regular Django DB,
which is a simple way to get started but may not scale well for very large volumes of outbound email.

In addition to handling connectivity issues, either of these approaches also has the advantage of moving email sending
to a background thread. This is a best practice for sending email from Django, as it allows your web views to respond
faster.

Automatic retries

Backends that use requests for network calls can configure its built-in retry functionality. Subclass the Anymail
backend and mount instances of HTTPAdapter and Retry configured with your settings on the Session object in
create_session().

Automatic retries aren’t a substitute for sending emails in a background thread, they’re a way to simplify your retry logic
within the worker. Be aware that retrying read and other failures may result in sending duplicate emails. Requests
will only attempt to retry idempotent HTTP verbs by default, you may need to whitelist the verbs used by your backend’s
API in allowed_methods to actually get any retries. It can also automatically retry error HTTP status codes for you
but you may need to configure status_forcelist with the error HTTP status codes used by your backend provider.

import anymail.backends.mandrill
from django.conf import settings
import requests.adapters

class RetryableMandrillEmailBackend(anymail.backends.mandrill.EmailBackend):
def __init__(self, *args, **kwargs):

super().__init__(*args, **kwargs)
retry = requests.adapters.Retry(

total=settings.EMAIL_TOTAL_RETRIES,
connect=settings.EMAIL_CONNECT_RETRIES,
read=settings.EMAIL_READ_RETRIES,

(continues on next page)

90 Chapter 1. Documentation

https://pypi.org/project/celery/
https://pypi.org/project/channels/
https://pypi.org/project/django-mailer/
https://pypi.org/project/requests/
https://requests.readthedocs.io/en/stable/api/#requests.adapters.HTTPAdapter
https://urllib3.readthedocs.io/en/stable/reference/urllib3.util.html#urllib3.util.Retry
https://requests.readthedocs.io/en/stable/api/#requests.Session

Anymail Documentation, Release 10.1

(continued from previous page)

status=settings.EMAIL_HTTP_STATUS_RETRIES,
other=settings.EMAIL_OTHER_RETRIES,
allowed_methods=False, # Retry all HTTP verbs
status_forcelist=settings.EMAIL_HTTP_STATUS_RETRYABLE,
backoff_factor=settings.EMAIL_RETRY_BACKOFF_FACTOR,

)
self.retryable_adapter = requests.adapters.HTTPAdapter(max_

→˓retries=retry)

def create_session(self):
session = super().create_session()
session.mount("https://", self.retryable_adapter)
return session

1.6.2 Mixing email backends

Since you are replacing Django’s global EMAIL_BACKEND, by default Anymail will handle all outgoing mail, sending
everything through your ESP.

You can use Django mail’s optional connection argument to send some mail through your ESP and others through a
different system.

This could be useful, for example, to deliver customer emails with the ESP, but send admin emails directly through an
SMTP server:

from django.core.mail import send_mail, get_connection

send_mail connection defaults to the settings EMAIL_BACKEND, which
we've set to Anymail's Mailgun EmailBackend. This will be sent using Mailgun:
send_mail("Thanks", "We sent your order", "sales@example.com", ["customer@example.com"])

Get a connection to an SMTP backend, and send using that instead:
smtp_backend = get_connection('django.core.mail.backends.smtp.EmailBackend')
send_mail("Uh-Oh", "Need your attention", "admin@example.com", ["alert@example.com"],

connection=smtp_backend)

You can even use multiple Anymail backends in the same app:
sendgrid_backend = get_connection('anymail.backends.sendgrid.EmailBackend')
send_mail("Password reset", "Here you go", "noreply@example.com", ["user@example.com"],

connection=sendgrid_backend)

You can override settings.py settings with kwargs to get_connection.
This example supplies credentials for a different Mailgun sub-acccount:
alt_mailgun_backend = get_connection('anymail.backends.mailgun.EmailBackend',

api_key=MAILGUN_API_KEY_FOR_MARKETING)
send_mail("Here's that info", "you wanted", "info@marketing.example.com", [
→˓"prospect@example.org"],

connection=alt_mailgun_backend)

You can supply a different connection to Django’s send_mail() and send_mass_mail() helpers, and in the con-
structor for an EmailMessage or EmailMultiAlternatives.

(See the django.utils.log.AdminEmailHandler docs for more information on Django’s admin error logging.)

1.6. Tips, tricks, and advanced usage 91

https://docs.djangoproject.com/en/stable/ref/settings/#std-setting-EMAIL_BACKEND
https://docs.djangoproject.com/en/stable/topics/email/#django.core.mail.get_connection
https://docs.djangoproject.com/en/stable/topics/email/#django.core.mail.send_mail
https://docs.djangoproject.com/en/stable/topics/email/#django.core.mail.send_mass_mail
https://docs.djangoproject.com/en/stable/topics/email/#django.core.mail.EmailMessage
https://docs.djangoproject.com/en/stable/ref/logging/#django.utils.log.AdminEmailHandler

Anymail Documentation, Release 10.1

You could expand on this concept and create your own EmailBackend that dynamically switches between other Anymail
backends—based on properties of the message, or other criteria you set. For example, this gist shows an EmailBackend
that checks ESPs’ status-page APIs, and automatically falls back to a different ESP when the first one isn’t working.

1.6.3 Using Django templates for email

ESP’s templating languages and merge capabilities are generally not compatible with each other, which can make it
hard to move email templates between them.

But since you’re working in Django, you already have access to the extremely-full-featured Django templating system.
You don’t even have to use Django’s template syntax: it supports other template languages (like Jinja2).

You’re probably already using Django’s templating system for your HTML pages, so it can be an easy decision to use
it for your email, too.

To compose email using Django templates, you can use Django’s render_to_string() template shortcut to build
the body and html.

Example that builds an email from the templates message_subject.txt, message_body.txt and message_body.
html:

from django.core.mail import EmailMultiAlternatives
from django.template.loader import render_to_string

merge_data = {
'ORDERNO': "12345", 'TRACKINGNO': "1Z987"

}

subject = render_to_string("message_subject.txt", merge_data).strip()
text_body = render_to_string("message_body.txt", merge_data)
html_body = render_to_string("message_body.html", merge_data)

msg = EmailMultiAlternatives(subject=subject, from_email="store@example.com",
to=["customer@example.com"], body=text_body)

msg.attach_alternative(html_body, "text/html")
msg.send()

Tip: use Django’s {% autoescape off %} template tag in your plaintext .txt templates to avoid inappropriate
HTML escaping.

Helpful add-ons

These (third-party) packages can be helpful for building your email in Django:

• django-templated-mail, django-mail-templated, or django-mail-templated-simple for building messages from
sets of Django templates.

• premailer for inlining css before sending

• BeautifulSoup, lxml, or html2text for auto-generating plaintext from your html

92 Chapter 1. Documentation

https://gist.github.com/tgehrs/58ae571b6db64225c317bf83c06ec312
https://docs.djangoproject.com/en/stable/topics/templates/
https://docs.djangoproject.com/en/stable/topics/templates/#django.template.loader.render_to_string
https://docs.djangoproject.com/en/stable/ref/templates/builtins/#std-templatetag-autoescape
https://pypi.org/project/django-templated-mail/
https://pypi.org/project/django-mail-templated/
https://pypi.org/project/django-mail-templated-simple/
https://pypi.org/project/premailer/
https://pypi.org/project/BeautifulSoup/
https://pypi.org/project/lxml/
https://pypi.org/project/html2text/

Anymail Documentation, Release 10.1

1.6.4 Securing webhooks

If not used carefully, webhooks can create security vulnerabilities in your Django application.

At minimum, you should use https and a shared authentication secret for your Anymail webhooks. (Really, for any
webhooks.)

Does this really matter?

Short answer: yes!

Do you allow unauthorized access to your APIs? Would you want someone eavesdropping on API calls? Of course
not. Well, a webhook is just another API.

Think about the data your ESP sends and what your app does with it. If your webhooks aren’t secured, an attacker
could. . .

• accumulate a list of your customers’ email addresses

• fake bounces and spam reports, so you block valid user emails

• see the full contents of email from your users

• convincingly forge incoming mail, tricking your app into publishing spam or acting on falsified commands

• overwhelm your DB with garbage data (do you store tracking info? incoming attachments?)

. . . or worse. Why take a chance?

Use https

For security, your Django site must use https. The webhook URLs you give your ESP need to start with https (not http).

Without https, the data your ESP sends your webhooks is exposed in transit. This can include your customers’ email
addresses, the contents of messages you receive through your ESP, the shared secret used to authorize calls to your
webhooks (described in the next section), and other data you’d probably like to keep private.

Configuring https is beyond the scope of Anymail, but there are many good tutorials on the web. If you’ve previously
dismissed https as too expensive or too complicated, please take another look. Free https certificates are available from
Let’s Encrypt, and many hosting providers now offer easy https configuration using Let’s Encrypt or their own no-cost
option.

If you aren’t able to use https on your Django site, then you should not set up your ESP’s webhooks.

Use a shared authentication secret

A webhook is an ordinary URL—anyone can post anything to it. To avoid receiving random (or malicious) data in
your webhook, you should use a shared random secret that your ESP can present with webhook data, to prove the post
is coming from your ESP.

Most ESPs recommend using HTTP basic authentication as this shared secret. Anymail includes support for this, via
the ANYMAIL_WEBHOOK_SECRET setting. Basic usage is covered in the webhooks configuration docs.

If something posts to your webhooks without the required shared secret as basic auth in the HTTP Authoriza-
tion header, Anymail will raise an AnymailWebhookValidationFailure error, which is a subclass of Django’s
SuspiciousOperation. This will result in an HTTP 400 “bad request” response, without further processing the data
or calling your signal receiver function.

1.6. Tips, tricks, and advanced usage 93

https://letsencrypt.org/
https://docs.djangoproject.com/en/stable/ref/exceptions/#django.core.exceptions.SuspiciousOperation

Anymail Documentation, Release 10.1

In addition to a single “random:random” string, you can give a list of authentication strings. Anymail will permit
webhook calls that match any of the authentication strings:

ANYMAIL = {
...
'WEBHOOK_SECRET': [

'abcdefghijklmnop:qrstuvwxyz0123456789',
'ZYXWVUTSRQPONMLK:JIHGFEDCBA9876543210',

],
}

This facilitates credential rotation: first, append a new authentication string to the list, and deploy your Django site.
Then, update the webhook URLs at your ESP to use the new authentication. Finally, remove the old (now unused)
authentication string from the list and re-deploy.

Warning: If your webhook URLs don’t use https, this shared authentication secret won’t stay secret, defeating its
purpose.

Signed webhooks

Some ESPs implement webhook signing, which is another method of verifying the webhook data came from your ESP.
Anymail will verify these signatures for ESPs that support them. See the docs for your specific ESP for more details
and configuration that may be required.

Even with signed webhooks, it doesn’t hurt to also use a shared secret.

Additional steps

Webhooks aren’t unique to Anymail or to ESPs. They’re used for many different types of inter-site communication,
and you can find additional recommendations for improving webhook security on the web.

For example, you might consider:

• Tracking event_id , to avoid accidental double-processing of the same events (or replay attacks)

• Checking the webhook’s timestamp is reasonably close the current time

• Configuring your firewall to reject webhook calls that come from somewhere other than your ESP’s documented
IP addresses (if your ESP provides this information)

• Rate-limiting webhook calls in your web server or using something like django-ratelimit

But you should start with using https and a random shared secret via HTTP auth.

1.6.5 Testing your app

Testing sending mail

Django’s documentation covers the basics of testing email sending in Django. Everything in their examples will work
with projects using Anymail.

Django’s test runner makes sure your test cases don’t actually send email, by loading a dummy “locmem” EmailBackend
that accumulates messages in memory rather than sending them. You may not need anything more complicated for
verifying your app.

94 Chapter 1. Documentation

https://pypi.org/project/django-ratelimit/
https://docs.djangoproject.com/en/stable/topics/testing/tools/#topics-testing-email

Anymail Documentation, Release 10.1

Anymail also includes its own “test” EmailBackend. This is intended primarily for Anymail’s internal testing, but you
may find it useful for some of your test cases, too:

• Like Django’s locmem EmailBackend, Anymail’s test EmailBackend collects sent messages in django.core.
mail.outbox. Django clears the outbox automatically between test cases.

• Unlike the locmem backend, Anymail’s test backend processes the messages as though they would be sent by a
generic ESP. This means every sent EmailMessage will end up with an anymail_status attribute after sending,
and some common problems like malformed addresses may be detected. (But no ESP-specific checks are run.)

• Anymail’s test backend also adds an anymail_test_params attribute to each EmailMessage as it sends it. This
is a dict of the actual params that would be used to send the message, including both Anymail-specific attributes
from the EmailMessage and options that would come from Anymail settings defaults.

Here’s an example:

from django.core import mail
from django.test import TestCase
from django.test.utils import override_settings

@override_settings(EMAIL_BACKEND='anymail.backends.test.EmailBackend')
class SignupTestCase(TestCase):

Assume our app has a signup view that accepts an email address...
def test_sends_confirmation_email(self):

self.client.post("/account/signup/", {"email": "user@example.com"})

Test that one message was sent:
self.assertEqual(len(mail.outbox), 1)

Verify attributes of the EmailMessage that was sent:
self.assertEqual(mail.outbox[0].to, ["user@example.com"])
self.assertEqual(mail.outbox[0].tags, ["confirmation"]) # an Anymail custom attr

Or verify the Anymail params, including any merged settings defaults:
self.assertTrue(mail.outbox[0].anymail_test_params["track_clicks"])

Note that django.core.mail.outbox is an “outbox,” not an attempt to represent end users’ inboxes. When using
Django’s default locmem EmailBackend, each outbox item represents a single call to an SMTP server. With Anymail’s
test EmailBackend, each outbox item represents a single call to an ESP’s send API. (Anymail does not try to simulate
how an ESP might further process the message for that API call: Anymail can’t render ESP stored templates, and
it keeps a batch send message as a single outbox item, representing the single ESP API call that will send multiple
messages. You can check outbox[n].anymail_test_params['is_batch_send'] to see if a message would fall
under Anymail’s batch send logic.)

Testing tracking webhooks

If you are using Anymail’s event tracking webhooks, you’ll likely want to test your signal receiver code that processes
those events.

One easy approach is to create a simulated AnymailTrackingEvent in your test case, then call anymail.signals.
tracking.send() to deliver it to your receiver function(s). Here’s an example:

from anymail.signals import AnymailTrackingEvent, tracking
from django.test import TestCase

(continues on next page)

1.6. Tips, tricks, and advanced usage 95

Anymail Documentation, Release 10.1

(continued from previous page)

class EmailTrackingTests(TestCase):
def test_delivered_event(self):

Build an AnymailTrackingEvent with event_type (required)
and any other attributes your receiver cares about. E.g.:
event = AnymailTrackingEvent(

event_type="delivered",
recipient="to@example.com",
message_id="test-message-id",

)

Invoke all registered Anymail tracking signal receivers:
tracking.send(sender=object(), event=event, esp_name="TestESP")

Verify expected behavior of your receiver. What to test here
depends on how your code handles the tracking events. E.g., if
you create a Django model to store the event, you might check:
from myapp.models import MyTrackingModel
self.assertTrue(MyTrackingModel.objects.filter(

email="to@example.com", event="delivered",
message_id="test-message-id",

).exists())

def test_bounced_event(self):
... as above, but with `event_type="bounced"`
etc.

This example uses Django’s Signal.send, so the test also verifies your receiver was registered properly, and it will
call multiple receiver functions if your code uses them.

Your test cases could instead import your tracking receiver function and call it directly with the simulated event data.
(Either approach is effective, and which to use is largely a matter of personal taste.)

Testing receiving mail

If your project handles receiving inbound mail, you can test that with an approach similar to the one used for event
tracking webhooks above.

First build a simulated AnymailInboundEvent containing a simulated AnymailInboundMessage. Then dispatch to
your inbound receiver function(s) with anymail.signals.inbound.send(). Like this:

from anymail.inbound import AnymailInboundMessage
from anymail.signals import AnymailInboundEvent, inbound
from django.test import TestCase

class EmailReceivingTests(TestCase):
def test_inbound_event(self):

Build a simple AnymailInboundMessage and AnymailInboundEvent
(see tips for more complex messages after the example):
message = AnymailInboundMessage.construct(

from_email="user@example.com", to="comments@example.net",
subject="subject", text="text body", html="html body")

event = AnymailInboundEvent(message=message)
(continues on next page)

96 Chapter 1. Documentation

https://docs.djangoproject.com/en/stable/topics/signals/#django.dispatch.Signal.send

Anymail Documentation, Release 10.1

(continued from previous page)

Invoke all registered Anymail inbound signal receivers:
inbound.send(sender=object(), event=event, esp_name="TestESP")

Verify expected behavior of your receiver. What to test here
depends on how your code handles the inbound message. E.g., if
you create a user comment from the message, you might check:
from myapp.models import MyCommentModel
comment = MyCommentModel.objects.get(poster="user@example.com")
self.assertEqual(comment.text, "text body")

For examples of various ways to build an AnymailInboundMessage, set headers, add attachments, etc., see
test_inbound.py in Anymail’s tests. In particular, you may find AnymailInboundMessage.parse_raw_mime(str)
or AnymailInboundMessage.parse_raw_mime_file(fp) useful for loading complex, real-world email messages
into test cases.

1.6.6 Batch send performance

If you are sending batches of hundreds of emails at a time, you can improve performance slightly by reusing a single
HTTP connection to your ESP’s API, rather than creating (and tearing down) a new connection for each message.

Most Anymail EmailBackends automatically reuse their HTTP connections when used with Django’s batch-sending
functions send_mass_mail() or connection.send_messages(). See Sending multiple emails in the Django docs
for more info and an example.

If you need even more performance, you may want to consider your ESP’s batch-sending features. When supported by
your ESP, Anymail can send multiple messages with a single API call. See Batch sending with merge data for details,
and be sure to check the ESP-specific info because batch sending capabilities vary significantly between ESPs.

1.7 Help

1.7.1 Getting support

Anymail is supported and maintained by the people who use it—like you! Our contributors volunteer their time (and
most are not employees of any ESP).

Here’s how to contact the Anymail community:

“How do I. . . ?”
If searching the docs doesn’t find an answer, ask a question in the GitHub Anymail discussions forum.

“I’m getting an error or unexpected behavior. . . ”
First, try the troubleshooting tips in the next section. If those don’t help, ask a question in the GitHub
Anymail discussions forum. Be sure to include:

• which ESP you’re using (Mailgun, SendGrid, etc.)

• what versions of Anymail, Django, and Python you’re running

• the relevant portions of your code and settings

• the text of any error messages

• any exception stack traces

1.7. Help 97

https://github.com/anymail/django-anymail/blob/main/tests/test_inbound.py
https://docs.djangoproject.com/en/stable/topics/email/#django.core.mail.send_mass_mail
https://docs.djangoproject.com/en/stable/topics/email/#topics-sending-multiple-emails
https://github.com/anymail/django-anymail/discussions
https://github.com/anymail/django-anymail/discussions

Anymail Documentation, Release 10.1

• the results of your troubleshooting (e.g., any relevant info from your ESP’s activity log)

• if it’s something that was working before, when it last worked, and what (if anything) changed since
then

. . . plus anything else you think might help someone understand what you’re seeing.

“I found a bug. . . ”
Open a GitHub issue. Be sure to include the versions and other information listed above. (And if you know
what the problem is, we always welcome contributions with a fix!)

“I found a security issue!”
Contact the Anymail maintainers by emailing security<at>anymail<dot>dev. (Please don’t open a GitHub
issue or post publicly about potential security problems.)

“Could Anymail support this ESP or feature. . . ?”
If the idea has already been suggested in the GitHub Anymail discussions forum, express your support
using GitHub’s thumbs up reaction. If not, add the idea as a new discussion topic. And either way, if you’d
be able to help with development or testing, please add a comment saying so.

1.7.2 Troubleshooting

If Anymail’s not behaving like you expect, these troubleshooting tips can often help you pinpoint the problem. . .

Check the error message
Look for an Anymail error message in your console (running Django in dev mode) or in your server error
logs. If you see something like “invalid API key” or “invalid email address”, that’s often a big first step
toward being able to solve the problem.

Check your ESPs API logs
Most ESPs offer some sort of API activity log in their dashboards. Check their logs to see if the data you
thought you were sending actually made it to your ESP, and if they recorded any errors there.

Double-check common issues
• Did you add any required settings for your ESP to the ANYMAIL dict in your settings.py? (E.g.,
"SENDGRID_API_KEY" for SendGrid.) Check the instructions for the ESP you’re using under Supported ESPs.

• Did you add 'anymail' to the list of INSTALLED_APPS in settings.py?

• Are you using a valid from address? Django’s default is “webmaster@localhost”, which most ESPs reject. Either
specify the from_email explicitly on every message you send, or add DEFAULT_FROM_EMAIL to your settings.py.

Try it without Anymail
If you think Anymail might be causing the problem, try switching your EMAIL_BACKEND setting to Django’s
File backend and then running your email-sending code again. If that causes errors, you’ll know the issue is
somewhere other than Anymail. And you can look through the EMAIL_FILE_PATH file contents afterward
to see if you’re generating the email you want.

Examine the raw API communication
Sometimes you just want to see exactly what Anymail is telling your ESP to do and how your ESP is
responding. In a dev environment, enable the Anymail setting DEBUG_API_REQUESTS to show the raw
HTTP requests and responses from (most) ESP APIs. (This is not recommended in production, as it can
leak sensitive data into your logs.)

98 Chapter 1. Documentation

https://github.com/anymail/django-anymail/issues
https://github.com/anymail/django-anymail/discussions
https://blog.github.com/2016-03-10-add-reactions-to-pull-requests-issues-and-comments/
https://docs.djangoproject.com/en/stable/ref/settings/#std-setting-INSTALLED_APPS
mailto:webmaster@localhost
https://docs.djangoproject.com/en/stable/ref/settings/#std-setting-DEFAULT_FROM_EMAIL
https://docs.djangoproject.com/en/stable/ref/settings/#std-setting-EMAIL_BACKEND
https://docs.djangoproject.com/en/stable/topics/email/#topic-email-file-backend
https://docs.djangoproject.com/en/stable/ref/settings/#std-setting-EMAIL_FILE_PATH

Anymail Documentation, Release 10.1

1.8 Contributing

Anymail is maintained by its users. Your contributions are encouraged!

The Anymail source code is on GitHub.

1.8.1 Contributors

See the contributor chart for a list of some of the people who have helped improve Anymail.

Anymail evolved from the Djrill project. Special thanks to the folks from brack3t who developed the original version
of Djrill.

1.8.2 Bugs

You can report problems or request features in Anymail’s GitHub issue tracker. (For a security-related issue that should
not be disclosed publicly, instead email Anymail’s maintainers at security<at>anymail<dot>dev.)

We also have some Troubleshooting information that may be helpful.

1.8.3 Pull requests

Pull requests are always welcome to fix bugs and improve support for ESP and Django features.

• Please include test cases.

• We try to follow the Django coding style.

• If you install pre-commit, most of the style guidelines will be handled automatically.

• By submitting a pull request, you’re agreeing to release your changes under under the same BSD license as the
rest of this project.

• Documentation is appreciated, but not required. (Please don’t let missing or incomplete documentation keep you
from contributing code.)

1.8.4 Testing

Anymail is tested via GitHub Actions against several combinations of Django and Python versions. Tests are run at
least once a week, to check whether ESP APIs and other dependencies have changed out from under Anymail.

To run the tests locally, use tox:

install tox and other development requirements:
$ python -m pip install -r requirements-dev.txt

test a representative combination of Python and Django versions:
$ tox -e lint,django42-py311-all,django30-py37-all,docs

you can also run just some test cases, e.g.:
$ tox -e django42-py311-all tests.test_mailgun_backend tests.test_utils

to test more Python/Django versions:
$ tox --parallel auto # ALL 20+ envs! (in parallel if possible)

1.8. Contributing 99

https://github.com/anymail/django-anymail
https://github.com/anymail/django-anymail/graphs/contributors
https://github.com/brack3t/Djrill
http://brack3t.com/
https://github.com/anymail/django-anymail/issues
https://docs.djangoproject.com/en/dev/internals/contributing/writing-code/coding-style/
https://pre-commit.com/
https://github.com/anymail/django-anymail/actions?query=workflow:test
https://pypi.org/project/tox/

Anymail Documentation, Release 10.1

(If your system doesn’t come with the necessary Python versions, pyenv is helpful to install and manage them. Or use
the --skip-missing-interpreters tox option.)

If you don’t want to use tox (or have trouble getting it working), you can run the tests in your current Python environment:

install the testing requirements (if any):
$ python -m pip install -r tests/requirements.txt

run the tests:
$ python runtests.py

this command can also run just a few test cases, e.g.:
$ python runtests.py tests.test_mailgun_backend tests.test_mailgun_webhooks

Most of the included tests verify that Anymail constructs the expected ESP API calls, without actually calling the ESP’s
API or sending any email. (So these tests don’t require any API keys.)

In addition to the mocked tests, Anymail has integration tests which do call live ESP APIs. These tests are normally
skipped; to run them, set environment variables with the necessary API keys or other settings. For example:

$ export ANYMAIL_TEST_MAILGUN_API_KEY='your-Mailgun-API-key'
$ export ANYMAIL_TEST_MAILGUN_DOMAIN='mail.example.com' # sending domain for␣
→˓that API key
$ tox -e django42-py311-all tests.test_mailgun_integration

Check the *_integration_tests.py files in the tests source to see which variables are required for each ESP. De-
pending on the supported features, the integration tests for a particular ESP send around 5-15 individual messages.
For ESPs that don’t offer a sandbox, these will be real sends charged to your account (again, see the notes in each test
case). Be sure to specify a particular testenv with tox’s -e option, or tox will repeat the tests for all 20+ supported
combinations of Python and Django, sending hundreds of messages.

1.8.5 Documentation

As noted above, Anymail welcomes pull requests with missing or incomplete documentation. (Code without docs is
better than no contribution at all.) But documentation—even needing edits—is always appreciated, as are pull requests
simply to improve the docs themselves.

Like many Python packages, Anymail’s docs use Sphinx. If you’ve never worked with Sphinx or reStructuredText,
Django’s Writing Documentation can get you started.

It’s easiest to build Anymail’s docs using tox:

$ python -m pip install -r requirements-dev.txt
$ tox -e docs # build the docs using Sphinx

You can run Python’s simple HTTP server to view them:

$ (cd .tox/docs/_html; python -m http.server 8123 --bind 127.0.0.1)

. . . and then open http://localhost:8123/ in a browser. Leave the server running, and just re-run the tox command and
refresh your browser as you make changes.

If you’ve edited the main README.rst, you can preview an approximation of what will end up on PyPI at http://
localhost:8123/readme.html.

Anymail’s Sphinx conf sets up a few enhancements you can use in the docs:

100 Chapter 1. Documentation

https://github.com/pyenv/pyenv
https://github.com/anymail/django-anymail/blob/main/tests
https://pypi.org/project/Sphinx/
https://docs.djangoproject.com/en/stable/internals/contributing/writing-documentation/
http://localhost:8123/
http://localhost:8123/readme.html
http://localhost:8123/readme.html

Anymail Documentation, Release 10.1

• Loads intersphinx mappings for Python 3, Django (stable), and Requests. Docs can refer to things like
:ref:`django:topics-testing-email` or :class:`django.core.mail.EmailMessage`.

• Supports much of Django’s added markup, notably :setting: for documenting or referencing Django and
Anymail settings.

• Allows linking to Python packages with :pypi:`package-name` (via extlinks).

1.9 Changelog

Anymail releases follow semantic versioning. Among other things, this means that minor updates (1.x to 1.y) should
always be backwards-compatible, and breaking changes will always increment the major version number (1.x to 2.0).

1.9.1 Release history

v10.1

2023-07-31

Features

• Inbound: Improve AnymailInboundMessage’s handling of inline content:

– Rename inline_attachments to content_id_map, more accurately reflecting its function.

– Add new inlines property that provides a complete list of inline content, whether or not it includes a
Content-ID. This is helpful for accessing inline images that appear directly in a multipart/mixed body, such
as those created by the Apple Mail app.

– Rename is_inline_attachment() to just is_inline().

The renamed items are still available, but deprecated, under their old names. See docs. (Thanks to @martine-
zleoml.)

• Inbound: AnymailInboundMessage now derives from Python’s email.message.EmailMessage, which pro-
vides improved compatibility with email standards. (Thanks to @martinezleoml.)

• Brevo (Sendinblue): Sendinblue has rebranded to “Brevo.” Change default API endpoint to api.brevo.com,
and update docs to reflect new name. Anymail still uses sendinblue in the backend name, for settings, etc., so
there should be no impact on your code. (Thanks to @sblondon.)

• Brevo (Sendinblue): Add support for inbound email. (See docs.)

• SendGrid: Support multiple reply_to addresses. (Thanks to @gdvalderrama for pointing out the new API.)

1.9. Changelog 101

https://www.sphinx-doc.org/en/stable/usage/extensions/intersphinx.html
https://docs.djangoproject.com/en/stable/internals/contributing/writing-documentation/#django-specific-markup
https://www.sphinx-doc.org/en/stable/usage/extensions/extlinks.html
http://anymail.dev/en/stable/inbound/#anymail.inbound.AnymailInboundMessage
https://github.com/martinezleoml
https://github.com/martinezleoml
https://github.com/martinezleoml
https://github.com/sblondon
https://anymail.dev/en/stable/esps/sendinblue/#sendinblue-inbound
https://github.com/gdvalderrama

Anymail Documentation, Release 10.1

Deprecations

• Inbound: AnymailInboundMessage.inline_attachments and .is_inline_attachment() have been
renamed—see above.

v10.0

2023-05-07

Breaking changes

• Amazon SES: The Amazon SES backend now sends using the SES v2 API. Most projects should not require
code changes, but you may need to update your IAM permissions. See Migrating to the SES v2 API.

If you were using SES v2 under Anymail 9.1 or 9.2, change your EMAIL_BACKEND setting from amazon_sesv2
to just amazon_ses.

(If you are not ready to migrate to SES v2, an amazon_sesv1 EmailBackend is available. But Anymail will drop
support for that later this year. See Using SES v1 (deprecated).)

• Amazon SES: The “extra name” for installation must now be spelled with a hyphen rather than an under-
score: django-anymail[amazon-ses]. Be sure to update any dependencies specification (pip install, require-
ments.txt, etc.) that had been using [amazon_ses]. (This change is due to package name normalization rules
enforced by modern Python packaging tools.)

• Mandrill: Remove support for Mandrill-specific message attributes left over from Djrill. These attributes have
raised DeprecationWarnings since Anymail 0.3 (in 2016), but are now silently ignored. See Migrating from
Djrill.

• Require Python 3.7 or later.

• Require urllib3 1.25 or later. (Drop a workaround for older urllib3 releases. urllib3 is a requests dependency;
version 1.25 was released 2019-04-29. Unless you are pinning an earlier urllib3, this change should have no
impact.)

Features

• Postmark inbound:
– Handle Postmark’s “Include raw email content in JSON payload” inbound option. We recommend enabling

this in Postmark’s dashboard to get the most accurate representation of received email.

– Obtain envelope_sender from Return-Path Postmark now provides. (Replaces potentially faulty
Received-SPF header parsing.)

– Add Bcc header to inbound message if provided. Postmark adds bcc when the delivered-to address does
not appear in the To header.

102 Chapter 1. Documentation

https://anymail.dev/en/stable/esps/amazon_ses/#amazon-ses-v2
https://anymail.dev/en/stable/esps/amazon_ses/#amazon-ses-v1
https://anymail.dev/en/v10.0/esps/mandrill/#djrill-message-attributes
https://anymail.dev/en/v10.0/esps/mandrill/#djrill-message-attributes

Anymail Documentation, Release 10.1

Other

• Modernize packaging. (Change from setup.py and setuptools to pyproject.toml and hatchling.) Other than the
amazon-ses naming normalization noted above, the new packaging should have no impact. If you have trouble
installing django-anymail v10 where v9 worked, please report an issue including the exact install command and
pip version you are using.

v9.2

2023-05-02

Fixes

• Fix misleading error messages when sending with fail_silently=True and session creation fails (e.g., with
Amazon SES backend and missing credentials). (Thanks to @technolingo.)

• Postmark inbound: Fix spurious AnymailInvalidAddress in message.cc when inbound message has no Cc
recipients. (Thanks to @Ecno92.)

• Postmark inbound: Add workaround for malformed test data sent by Postmark’s inbound webhook “Check”
button. (See #304. Thanks to @Ecno92.)

Deprecations

• This will be the last Anymail release to support Python 3.6 (which reached end-of-life on 2021-12-23).

Other

• Test against Django 4.2 release.

v9.1

2023-03-11

Features

• Amazon SES: Add support for sending through the Amazon SES v2 API (not yet enabled by default; see Dep-
recations below; docs).

• MailerSend: Add support for this ESP (docs).

1.9. Changelog 103

https://github.com/technolingo
https://github.com/Ecno92
https://github.com/anymail/django-anymail/issues/304
https://github.com/Ecno92
https://anymail.dev/en/stable/esps/amazon_ses/#amazon-ses-v2
https://anymail.dev/en/stable/esps/mailersend/

Anymail Documentation, Release 10.1

Deprecations

• Amazon SES: Anymail will be switching to the Amazon SES v2 API. Support for the original SES v1 API is
now deprecated, and will be dropped in a future Anymail release (likely in late 2023). Many projects will not
require code changes, but you may need to update your IAM permissions. See Migrating to the SES v2 API.

Other

• Test against Django 4.2 prerelease, Python 3.11 (with Django 4.2), and PyPy 3.9.

• Use black, isort and doc8 to format code, enforced via pre-commit. (Thanks to @tim-schilling.)

v9.0

2022-12-18

Breaking changes

• Require Django 3.0 or later and Python 3.6 or later. (For compatibility with Django 2.x or Python 3.5, stay on
the Anymail v8.6 LTS extended support branch by setting your requirements to django-anymail~=8.6.)

Features

• Sendinblue: Support delayed sending using Anymail’s send_at option. (Thanks to @dimitrisor for noting
Sendinblue’s public beta release of this capability.)

• Support customizing the requests.Session for requests-based backends, and document how this can be used to
mount an adapter that simplifies automatic retry logic. (Thanks to @dgilmanAIDENTIFIED.)

• Confirm support for Django 4.1 and resolve deprecation warning regarding django.utils.timezone.utc.
(Thanks to @tim-schilling.)

Fixes

• Postmark: Handle Postmark’s SubscriptionChange events as Anymail unsubscribe, subscribe, or bounce track-
ing events, rather than “unknown”. (Thanks to @puru02 for the fix.)

• Sendinblue: Work around recent (unannounced) Sendinblue API change that caused “Invalid headers” API error
with non-string custom header values. Anymail now converts int and float header values to strings.

Other

• Test on Python 3.11 with Django development (Django 4.2) branch.

104 Chapter 1. Documentation

https://anymail.dev/en/stable/esps/amazon_ses/#amazon-ses-v2
https://github.com/tim-schilling
https://github.com/dimitrisor
https://github.com/dgilmanAIDENTIFIED
https://github.com/tim-schilling
https://github.com/puru02

Anymail Documentation, Release 10.1

v8.6 LTS

2022-05-15

This is an extended support release. Anymail v8.6 will receive security updates and fixes for any breaking ESP API
changes through at least May, 2023.

Fixes

• Mailgun and SendGrid inbound: Work around a Django limitation that drops attachments with certain file-
names. The missing attachments are now simply omitted from the resulting inbound message. (In earlier releases,
they would cause a MultiValueDictKeyError in Anymail’s inbound webhook.)

Anymail documentation now recommends using Mailgun’s and SendGrid’s “raw MIME” inbound options, which
avoid the problem and preserve all attachments.

See Mailgun inbound and SendGrid inbound for details. (Thanks to @erikdrums for reporting and helping
investigate the problem.)

Other

• Mailgun: Document Mailgun’s incorrect handling of display names containing both non-ASCII characters and
punctuation. (Thanks to @Flexonze for spotting and reporting the issue, and to Mailgun’s @b0d0nne11 for
investigating.)

• Mandrill: Document Mandrill’s incorrect handling of non-ASCII attachment filenames. (Thanks to @Thorbenl
for reporting the issue and following up with MailChimp.)

• Documentation (for all releases) is now hosted at anymail.dev (moved from anymail.info).

Deprecations

• This will be the last Anymail release to support Django 2.0–2.2 and Python 3.5.

If these deprecations affect you and you cannot upgrade, set your requirements to django-anymail~=8.6 (a “com-
patible release” specifier, equivalent to >=8.6,==8.*).

v8.5

2022-01-19

Fixes

• Allow attach_alternative("content", "text/plain") in place of setting an EmailMessage’s body, and
generally improve alternative part handling for consistency with Django’s SMTP EmailBackend. (Thanks to
@cjsoftuk for reporting the issue.)

• Remove “sending a message from sender to recipient” from AnymailError text, as this can unintentionally leak
personal information into logs. [Note that AnymailError does still include any error description from your ESP,
and this often contains email addresses and other content from the sent message. If this is a concern, you can
adjust Django’s logging config to limit collection from Anymail or implement custom PII filtering.] (Thanks to
@coupa-anya for reporting the issue.)

1.9. Changelog 105

https://anymail.dev/en/stable/esps/mailgun/#mailgun-inbound
https://anymail.dev/en/stable/esps/sendgrid/#sendgrid-inbound
https://github.com/erikdrums
https://github.com/Flexonze
https://github.com/b0d0nne11
https://github.com/Thorbenl
https://github.com/cjsoftuk
https://github.com/coupa-anya

Anymail Documentation, Release 10.1

Other

• Postmark: Document limitation on track_opens overriding Postmark’s server-level setting. (See docs.)

• Expand testing documentation to cover tracking events and inbound handling, and to clarify test EmailBackend
behavior.

• In Anymail’s test EmailBackend, add is_batch_send boolean to anymail_test_params to help tests check
whether a sent message would fall under Anymail’s batch-send logic.

v8.4

2021-06-15

Features

• Postal: Add support for this self-hosted ESP (docs). Thanks to @tiltec for researching, implementing, testing
and documenting Postal support.

v8.3

2021-05-19

Fixes

• Amazon SES: Support receiving and tracking mail in non-default (or multiple) AWS regions. Anymail now
always confirms an SNS subscription in the region where the SNS topic exists, which may be different from the
boto3 default. (Thanks to @mark-mishyn for reporting this.)

• Postmark: Fix two different errors when sending with a template but no merge data. (Thanks to @kareemcoding
and @Tobeyforce for reporting them.)

• Postmark: Fix silent failure when sending with long metadata keys and some other errors Postmark detects at
send time. Report invalid ‘cc’ and ‘bcc’ addresses detected at send time the same as ‘to’ recipients. (Thanks to
@chrisgrande for reporting the problem.)

v8.2

2021-01-27

Features

• Mailgun: Add support for AMP for Email (via message.attach_alternative(..., "text/
x-amp-html")).

106 Chapter 1. Documentation

https://anymail.dev/en/stable/esps/postmark/#limitations-and-quirks
https://anymail.dev/en/stable/tips/testing/
https://anymail.dev/en/stable/esps/postal
https://github.com/tiltec
https://github.com/mark-mishyn
https://github.com/kareemcoding
https://github.com/Tobeyforce
https://github.com/chrisgrande

Anymail Documentation, Release 10.1

Fixes

• SparkPost: Drop support for multiple from_email addresses. SparkPost has started issuing a cryptic “No
sending domain specified” error for this case; with this fix, Anymail will now treat it as an unsupported feature.

Other

• Mailgun: Improve error messages for some common configuration issues.

• Test against Django 3.2 prerelease (including support for Python 3.9)

• Document how to send AMP for Email with Django, and note which ESPs support it. (See docs.)

• Move CI testing to GitHub Actions (and stop using Travis-CI).

• Internal: catch invalid recipient status earlier in ESP response parsing

v8.1

2020-10-09

Features

• SparkPost: Add option for event tracking webhooks to map SparkPost’s “Initial Open” event to Anymail’s
normalized “opened” type. (By default, only SparkPost’s “Open” is reported as Anymail “opened”, and “Initial
Open” maps to “unknown” to avoid duplicates. See docs. Thanks to @slinkymanbyday.)

• SparkPost: In event tracking webhooks, map AMP open and click events to the corresponding Anymail nor-
malized event types. (Previously these were treated as as “unknown” events.)

v8.0

2020-09-11

Breaking changes

• Require Django 2.0 or later and Python 3. (For compatibility with Django 1.11 and Python 2.7, stay on the
Anymail v7.2 LTS extended support branch by setting your requirements to django-anymail~=7.2.)

• Mailjet: Upgrade to Mailjet’s newer v3.1 send API. Most Mailjet users will not be affected by this change,
with two exceptions: (1) Mailjet’s v3.1 API does not allow multiple reply-to addresses, and (2) if you are using
Anymail’s esp_extra, you will need to update it for compatibility with the new API. (See docs.)

• SparkPost: Call the SparkPost API directly, without using the (now unmaintained) Python SparkPost client
library. The “sparkpost” package is no longer necessary and can be removed from your project require-
ments. Most SparkPost users will not be affected by this change, with two exceptions: (1) You must provide
a SPARKPOST_API_KEY in your Anymail settings (Anymail does not check environment variables); and (2) if
you use Anymail’s esp_extra you will need to update it with SparkPost Transmissions API parameters.

As part of this change esp_extra now allows use of several SparkPost features, such as A/B testing, that were
unavailable through the Python SparkPost library. (See docs.)

1.9. Changelog 107

https://anymail.dev/en/stable/sending/django_email/#amp-email
https://anymail.dev/en/stable/esps/sparkpost/#sparkpost-webhooks
https://github.com/slinkymanbyday
https://anymail.dev/en/stable/esps/mailjet/#esp-extra-support
https://anymail.dev/en/stable/esps/sparkpost/

Anymail Documentation, Release 10.1

• Remove Anymail internal code related to supporting Python 2 and older Django versions. This does not change
the documented API, but may affect you if your code borrowed from Anymail’s undocumented internals. (You
should be able to switch to the Python standard library equivalents, as Anymail has done.)

• AnymailMessageMixin now correctly subclasses Django’s EmailMessage. If you use it as part of your own
custom EmailMessage-derived class, and you start getting errors about “consistent method resolution order,”
you probably need to change your class’s inheritance. (For some helpful background, see this comment about
mixin superclass ordering.)

Features

• SparkPost: Add support for subaccounts (new "SPARKPOST_SUBACCOUNT" Anymail setting), AMP for Email
(via message.attach_alternative(..., "text/x-amp-html")), and A/B testing and other SparkPost
sending features (via esp_extra). (See docs.)

v7.2.1

2020-08-05

Fixes

• Inbound: Fix a Python 2.7-only UnicodeEncodeError when attachments have non-ASCII filenames. (Thanks
to @kika115 for reporting it.)

v7.2 LTS

2020-07-25

This is an extended support release. Anymail v7.2 will receive security updates and fixes for any breaking ESP API
changes through at least July, 2021.

Fixes

• Amazon SES: Fix bcc, which wasn’t working at all on non-template sends. (Thanks to @mwheels for reporting
the issue.)

• Mailjet: Fix TypeError when sending to or from addresses with display names containing commas (introduced
in Django 2.2.15, 3.0.9, and 3.1).

• SendGrid: Fix UnicodeError in inbound webhook, when receiving message using charsets other than utf-8,
and not using SendGrid’s “post raw” inbound parse option. Also update docs to recommend “post raw” with
SendGrid inbound. (Thanks to @tcourtqtm for reporting the issue.)

108 Chapter 1. Documentation

https://nedbatchelder.com/blog/201210/multiple_inheritance_is_hard.html#comment_13805
https://anymail.dev/en/stable/esps/sparkpost/
https://github.com/kika115
https://github.com/mwheels
https://github.com/tcourtqtm

Anymail Documentation, Release 10.1

Features

• Test against Django 3.1 release candidates

Deprecations

• This will be the last Anymail release to support Django 1.11 and Python 2.7.

If these deprecations affect you and you cannot upgrade, set your requirements to django-anymail~=7.2 (a “com-
patible release” specifier, equivalent to >=7.2,==7.*).

v7.1

2020-04-13

Fixes

• Postmark: Fix API error when sending with template to single recipient. (Thanks to @jc-ee for finding and
fixing the issue.)

• SendGrid: Allow non-batch template send to multiple recipients when merge_global_data is set without
merge_data. (Broken in v6.0. Thanks to @vgrebenschikov for the bug report.)

Features

• Add DEBUG_API_REQUESTS setting to dump raw ESP API requests, which can assist in debugging or report-
ing problems to ESPs. (See docs. This setting has was quietly added in Anymail v4.3, and is now officially
documented.)

• Sendinblue: Now supports file attachments on template sends, when using their new template language. (Send-
inblue removed this API limitation on 2020-02-18; the change works with Anymail v7.0 and later. Thanks to
@sebashwa for noting the API change and updating Anymail’s docs.)

Other

• Test against released Django 3.0.

• SendGrid: Document unpredictable behavior in the SendGrid API that can cause text attachments to be sent
with the wrong character set. (See docs under “Wrong character set on text attachments.” Thanks to @nuschk
and @swrobel for helping track down the issue and reporting it to SendGrid.)

• Docs: Fix a number of typos and some outdated information. (Thanks @alee and @Honza-m.)

1.9. Changelog 109

https://github.com/jc-ee
https://github.com/vgrebenschikov
https://anymail.dev/en/stable/installation/#std:setting-ANYMAIL_DEBUG_API_REQUESTS
https://github.com/sebashwa
https://anymail.dev/en/stable/esps/sendgrid/#limitations-and-quirks
https://github.com/nuschk
https://github.com/swrobel
https://github.com/alee
https://github.com/Honza-m

Anymail Documentation, Release 10.1

v7.0

2019-09-07

Breaking changes

• Sendinblue templates: Support Sendinblue’s new (ESP stored) Django templates and new API for template
sending. This removes most of the odd limitations in the older (now-deprecated) SendinBlue template send API,
but involves two breaking changes:

– You must convert each old Sendinblue template to the new language as you upgrade to Anymail v7.0, or
certain features may be silently ignored on template sends (notably reply_to and recipient display names).

– Sendinblue’s API no longer supports sending attachments when using templates. [Note: Sendinblue re-
moved this API limitation on 2020-02-18.]

Ordinary, non-template sending is not affected by these changes. See docs for more info and alternatives. (Thanks
@Thorbenl.)

Features

• Mailgun: Support Mailgun’s new (ESP stored) handlebars templates via template_id. See docs. (Thanks
@anstosa.)

• Sendinblue: Support multiple tags. (Thanks @Thorbenl.)

Other

• Mailgun: Disable Anymail’s workaround for a Requests/urllib3 issue with non-ASCII attachment filenames
when a newer version of urllib3–which fixes the problem–is installed. (Workaround was added in Anymail v4.3;
fix appears in urllib3 v1.25.)

v6.1

2019-07-07

Features

• Mailgun: Add new MAILGUN_WEBHOOK_SIGNING_KEY setting for verifying tracking and inbound webhook
calls. Mailgun’s webhook signing key can become different from your MAILGUN_API_KEY if you have ever ro-
tated either key. See docs. (More in #153. Thanks to @dominik-lekse for reporting the problem and Mailgun’s
@mbk-ok for identifying the cause.)

110 Chapter 1. Documentation

https://help.sendinblue.com/hc/en-us/articles/360000991960
https://anymail.dev/en/stable/esps/sendinblue/#batch-sending-merge-and-esp-templates
https://github.com/Thorbenl
https://anymail.dev/en/stable/esps/mailgun/#batch-sending-merge-and-esp-templates
https://github.com/anstosa
https://github.com/Thorbenl
https://anymail.dev/en/stable/esps/mailgun/#std:setting-ANYMAIL_MAILGUN_WEBHOOK_SIGNING_KEY
https://github.com/anymail/django-anymail/issues/153
https://github.com/dominik-lekse
https://github.com/mbk-ok

Anymail Documentation, Release 10.1

v6.0.1

2019-05-19

Fixes

• Support using AnymailMessage with django-mailer and similar packages that pickle messages. (See #147.
Thanks to @ewingrj for identifying the problem.)

• Fix UnicodeEncodeError error while reporting invalid email address on Python 2.7. (See #148. Thanks to
@fdemmer for reporting the problem.)

v6.0

2019-02-23

Breaking changes

• Postmark: Anymail’s message.anymail_status.recipients[email] no longer lowercases the recipient’s
email address. For consistency with other ESPs, it now uses the recipient email with whatever case was used
in the sent message. If your code is doing something like message.anymail_status.recipients[email.
lower()], you should remove the .lower()

• SendGrid: In batch sends, Anymail’s SendGrid backend now assigns a separate message_id for each “to”
recipient, rather than sharing a single id for all recipients. This improves accuracy of tracking and statistics (and
matches the behavior of many other ESPs).

If your code uses batch sending (merge_data with multiple to-addresses) and checks message.
anymail_status.message_id after sending, that value will now be a set of ids. You can obtain each recipient’s
individual message_id with message.anymail_status.recipients[to_email].message_id. See docs.

Features

• Add new merge_metadata option for providing per-recipient metadata in batch sends. Available for all sup-
ported ESPs except Amazon SES and SendinBlue. See docs. (Thanks @janneThoft for the idea and SendGrid
implementation.)

• Mailjet: Remove limitation on using cc or bcc together with merge_data.

Fixes

• Mailgun: Better error message for invalid sender domains (that caused a cryptic “Mailgun API response 200:
OK Mailgun Magnificent API” error in earlier releases).

• Postmark: Don’t error if a message is sent with only Cc and/or Bcc recipients (but no To addresses).
Also, message.anymail_status.recipients[email] now includes send status for Cc and Bcc recipients.
(Thanks to @ailionx for reporting the error.)

• SendGrid: With legacy templates, stop (ab)using “sections” for merge_global_data. This avoids potential con-
flicts with a template’s own use of SendGrid section tags.

1.9. Changelog 111

https://github.com/anymail/django-anymail/issues/147
https://github.com/ewingrj
https://github.com/anymail/django-anymail/issues/148
https://github.com/fdemmer
https://anymail.dev/en/stable/esps/sendgrid/#sendgrid-message-id
https://anymail.dev/en/stable/sending/anymail_additions/#anymail.message.AnymailMessage.merge_metadata
https://github.com/janneThoft
https://github.com/ailionx

Anymail Documentation, Release 10.1

v5.0

2018-11-07

Breaking changes

• Mailgun: Anymail’s status tracking webhooks now report Mailgun “temporary failure” events as Anymail’s
normalized “deferred” event_type. (Previously they were reported as “bounced”, lumping them in with per-
manent failures.) The new behavior is consistent with how Anymail handles other ESP’s tracking notifications.
In the unlikely case your code depended on “temporary failure” showing up as “bounced” you will need to update
it. (Thanks @costela.)

Features

• Postmark: Allow either template alias (string) or numeric template id for Anymail’s template_id when send-
ing with Postmark templates.

Fixes

• Mailgun: Improve error reporting when an inbound route is accidentally pointed at Anymail’s tracking webhook
url or vice versa.

v4.3

2018-10-11

Features

• Treat MIME attachments that have a Content-ID but no explicit Content-Disposition header as inline, matching
the behavior of many email clients. For maximum compatibility, you should always set both (or use Anymail’s
inline helper functions). (Thanks @costela.)

Fixes

• Mailgun: Raise AnymailUnsupportedFeature error when attempting to send an attachment without a file-
name (or inline attachment without a Content-ID), because Mailgun silently drops these attachments from the
sent message. (See docs. Thanks @costela for identifying this undocumented Mailgun API limitation.)

• Mailgun: Fix problem where attachments with non-ASCII filenames would be lost. (Works around Re-
quests/urllib3 issue encoding multipart/form-data filenames in a way that isn’t RFC 7578 compliant. Thanks
to @decibyte for catching the problem.)

112 Chapter 1. Documentation

https://github.com/costela
https://github.com/costela
https://anymail.dev/en/stable/esps/mailgun/#limitations-and-quirks
https://github.com/costela
https://github.com/decibyte

Anymail Documentation, Release 10.1

Other

• Add (undocumented) DEBUG_API_REQUESTS Anymail setting. When enabled, prints raw API request and
response during send. Currently implemented only for Requests-based backends (all but Amazon SES and Spark-
Post). Because this can expose API keys and other sensitive info in log files, it should not be used in production.

v4.2

2018-09-07

Features

• Postmark: Support per-recipient template merge_data and batch sending. (Batch sending can be used with or
without a template. See docs.)

Fixes

• Postmark: When using template_id, ignore empty subject and body. (Postmark issues an error if Django’s
default empty strings are used with template sends.)

v4.1

2018-08-27

Features

• SendGrid: Support both new “dynamic” and original “legacy” transactional templates. (See docs.)

• SendGrid: Allow merging esp_extra["personalizations"] dict into other message-derived personaliza-
tions. (See docs.)

v4.0

2018-08-19

Breaking changes

• Drop support for Django versions older than Django 1.11. (For compatibility back to Django 1.8, stay on the
Anymail v3.0 extended support branch.)

• SendGrid: Remove the legacy SendGrid v2 EmailBackend. (Anymail’s default since v0.8 has been SendGrid’s
newer v3 API.) If your settings.py EMAIL_BACKEND still references “sendgrid_v2,” you must upgrade to v3.

1.9. Changelog 113

https://anymail.dev/en/stable/esps/postmark/#postmark-templates
https://anymail.dev/en/stable/esps/sendgrid/#sendgrid-templates
https://anymail.dev/en/stable/esps/sendgrid/#sendgrid-esp-extra
https://anymail.dev/en/v3.0/esps/sendgrid/#upgrading-to-sendgrid-s-v3-api

Anymail Documentation, Release 10.1

Features

• Mailgun: Add support for new Mailgun webhooks. (Mailgun’s original “legacy webhook” format is also still
supported. See docs.)

• Mailgun: Document how to use new European region. (This works in earlier Anymail versions, too.)

• Postmark: Add support for Anymail’s normalized metadata in sending and webhooks.

Fixes

• Avoid problems with Gmail blocking messages that have inline attachments, when sent from a machine whose
local hostname ends in .com. Change Anymail’s attach_inline_image() default Content-ID domain to the
literal text “inline” (rather than Python’s default of the local hostname), to work around a limitation of some ESP
APIs that don’t permit distinct content ID and attachment filenames (Mailgun, Mailjet, Mandrill and SparkPost).
See #112 for more details.

• Amazon SES: Work around an Amazon SES bug that can corrupt non-ASCII message bodies if you are using
SES’s open or click tracking. (See #115 for more details. Thanks to @varche1 for isolating the specific conditions
that trigger the bug.)

Other

• Maintain changelog in the repository itself (rather than in GitHub release notes).

• Test against released versions of Python 3.7 and Django 2.1.

v3.0

2018-05-30

This is an extended support release. Anymail v3.x will receive security updates and fixes for any breaking ESP API
changes through at least April, 2019.

Breaking changes

• Drop support for Python 3.3 (see #99).

• SendGrid: Fix a problem where Anymail’s status tracking webhooks didn’t always receive the same event.
message_id as the sent message.anymail_status.message_id, due to unpredictable behavior by Send-
Grid’s API. Anymail now generates a UUID for each sent message and attaches it as a SendGrid custom arg
named anymail_id. For most users, this change should be transparent. But it could be a breaking change if you
are relying on a specific message_id format, or relying on message_id matching the Message-ID mail header
or SendGrid’s “smtp-id” event field. (More details in the docs; also see #108.) Thanks to @joshkersey for the
report and the fix.

114 Chapter 1. Documentation

https://anymail.dev/en/stable/esps/mailgun/#mailgun-webhooks
https://github.com/anymail/django-anymail/issues/112
https://forums.aws.amazon.com/thread.jspa?threadID=287048
https://github.com/anymail/django-anymail/issues/115
https://github.com/varche1
https://github.com/anymail/django-anymail/issues/99
https://anymail.dev/en/stable/esps/sendgrid/#sendgrid-message-id
https://github.com/anymail/django-anymail/issues/108
https://github.com/joshkersey

Anymail Documentation, Release 10.1

Features

• Support Django 2.1 prerelease.

Fixes

• Mailjet: Fix tracking webhooks to work correctly when Mailjet “group events” option is disabled (see #106).

Deprecations

• This will be the last Anymail release to support Django 1.8, 1.9, and 1.10 (see #110).

• This will be the last Anymail release to support the legacy SendGrid v2 EmailBackend (see #111). (SendGrid’s
newer v3 API has been the default since Anymail v0.8.)

If these deprecations affect you and you cannot upgrade, set your requirements to django-anymail~=3.0 (a “com-
patible release” specifier, equivalent to >=3.0,==3.*).

v2.2

2018-04-16

Fixes

• Fix a breaking change accidentally introduced in v2.1: The boto3 package is no longer required if you aren’t
using Amazon SES.

v2.1

2018-04-11

NOTE: v2.1 accidentally introduced a breaking change: enabling Anymail webhooks with include('anymail.
urls') causes an error if boto3 is not installed, even if you aren’t using Amazon SES. This is fixed in v2.2.

Features

• Amazon SES: Add support for this ESP (docs).

• SparkPost: Add SPARKPOST_API_URL setting to support SparkPost EU and SparkPost Enterprise (docs).

• Postmark: Update for Postmark “modular webhooks.” This should not impact client code. (Also, older versions
of Anymail will still work correctly with Postmark’s webhook changes.)

1.9. Changelog 115

https://github.com/anymail/django-anymail/issues/106
https://github.com/anymail/django-anymail/issues/110
https://github.com/anymail/django-anymail/issues/111
https://anymail.dev/en/stable/esps/amazon_ses/
https://anymail.dev/en/stable/esps/sparkpost/#std:setting-ANYMAIL_SPARKPOST_API_URL

Anymail Documentation, Release 10.1

Fixes

• Inbound: Fix several issues with inbound messages, particularly around non-ASCII headers and body content.
Add workarounds for some limitations in older Python email packages.

Other

• Use tox to manage Anymail test environments (see contributor docs).

Deprecations

• This will be the last Anymail release to support Python 3.3. See #99 for more information.

v2.0

2018-03-08

Breaking changes

• Drop support for deprecated WEBHOOK_AUTHORIZATION setting. If you are using webhooks and still have
this Anymail setting, you must rename it to WEBHOOK_SECRET. See the v1.4 release notes.

• Handle Reply-To, From, and To in EmailMessage extra_headers the same as Django’s SMTP EmailBackend
if supported by your ESP, otherwise raise an unsupported feature error. Fixes the SparkPost backend to be
consistent with other backends if both headers["Reply-To"] and reply_to are set on the same message. If
you are setting a message’s headers["From"] or headers["To"] (neither is common), the new behavior is
likely a breaking change. See docs and #91.

• Treat EmailMessage extra_headers keys as case-insensitive in all backends, for consistency with each other
(and email specs). If you are specifying duplicate headers whose names differ only in case, this may be a breaking
change. See docs.

Features

• SendinBlue: Add support for this ESP (docs). Thanks to @RignonNoel for the implementation.

• Add EmailMessage envelope_sender attribute, which can adjust the message’s Return-Path if supported by
your ESP (docs).

• Add universal wheel to PyPI releases for faster installation.

116 Chapter 1. Documentation

https://anymail.dev/en/stable/contributing/#testing
https://github.com/anymail/django-anymail/issues/99
https://anymail.dev/en/stable/sending/django_email/#additional-headers
https://github.com/anymail/django-anymail/issues/91
https://anymail.dev/en/stable/sending/django_email/#additional-headers
https://anymail.dev/en/stable/esps/sendinblue/
https://github.com/RignonNoel
https://anymail.dev/en/stable/sending/anymail_additions/#anymail.message.AnymailMessage.envelope_sender

Anymail Documentation, Release 10.1

Other

• Update setup.py metadata, clean up implementation. (Hadn’t really been touched since original Djrill version.)

• Prep for Python 3.7.

v1.4

2018-02-08

Security

• Fix a low severity security issue affecting Anymail v0.2–v1.3: rename setting WEBHOOK_AUTHORIZATION
to WEBHOOK_SECRET to prevent inclusion in Django error reporting. (CVE-2018-1000089)

More information

Django error reporting includes the value of your Anymail WEBHOOK_AUTHORIZATION setting. In a properly-
configured deployment, this should not be cause for concern. But if you have somehow exposed your Django error
reports (e.g., by mis-deploying with DEBUG=True or by sending error reports through insecure channels), anyone who
gains access to those reports could discover your webhook shared secret. An attacker could use this to post fabricated
or malicious Anymail tracking/inbound events to your app, if you are using those Anymail features.

The fix renames Anymail’s webhook shared secret setting so that Django’s error reporting mechanism will sanitize it.

If you are using Anymail’s event tracking and/or inbound webhooks, you should upgrade to this release and change
“WEBHOOK_AUTHORIZATION” to “WEBHOOK_SECRET” in the ANYMAIL section of your settings.py. You
may also want to rotate the shared secret value, particularly if you have ever exposed your Django error reports to
untrusted individuals.

If you are only using Anymail’s EmailBackends for sending email and have not set up Anymail’s webhooks, this issue
does not affect you.

The old WEBHOOK_AUTHORIZATION setting is still allowed in this release, but will issue a system-check warning
when running most Django management commands. It will be removed completely in a near-future release, as a
breaking change.

Thanks to Charlie DeTar (@yourcelf) for responsibly reporting this security issue through private channels.

v1.3

2018-02-02

Security

• v1.3 includes the v1.2.1 security fix released at the same time. Please review the v1.2.1 release notes, below, if
you are using Anymail’s tracking webhooks.

1.9. Changelog 117

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2018-1000089
https://docs.djangoproject.com/en/stable/ref/settings/#debug
https://anymail.dev/en/stable/tips/securing_webhooks/#use-a-shared-authorization-secret
https://github.com/yourcelf

Anymail Documentation, Release 10.1

Features

• Inbound handling: Add normalized inbound message event, signal, and webhooks for all supported ESPs. (See
new Receiving mail docs.) This hasn’t been through much real-world testing yet; bug reports and feedback are
very welcome.

• API network timeouts: For Requests-based backends (all but SparkPost), use a default timeout of 30 seconds
for all ESP API calls, to avoid stalling forever on a bad connection. Add a REQUESTS_TIMEOUT Anymail
setting to override. (See #80.)

• Test backend improvements: Generate unique tracking message_id when using the test backend; add console
backend for use in development. (See #85.)

v1.2.1

2018-02-02

Security

• Fix a moderate severity security issue affecting Anymail v0.2–v1.2: prevent timing attack on WEB-
HOOK_AUTHORIZATION secret. (CVE-2018-6596)

More information

If you are using Anymail’s tracking webhooks, you should upgrade to this release, and you may want to rotate to a new
WEBHOOK_AUTHORIZATION shared secret (see docs). You should definitely change your webhook auth if your
logs indicate attempted exploit.

(If you are only sending email using an Anymail EmailBackend, and have not set up Anymail’s event tracking webhooks,
this issue does not affect you.)

Anymail’s webhook validation was vulnerable to a timing attack. A remote attacker could use this to obtain your
WEBHOOK_AUTHORIZATION shared secret, potentially allowing them to post fabricated or malicious email track-
ing events to your app.

There have not been any reports of attempted exploit. (The vulnerability was discovered through code review.) At-
tempts would be visible in HTTP logs as a very large number of 400 responses on Anymail’s webhook urls (by default
“/anymail/esp_name/tracking/”), and in Python error monitoring as a very large number of AnymailWebhookValida-
tionFailure exceptions.

v1.2

2017-11-02

Features

• Postmark: Support new click webhook in normalized tracking events

118 Chapter 1. Documentation

https://anymail.dev/en/stable/inbound/
https://github.com/anymail/django-anymail/issues/80
https://anymail.dev/en/stable/tips/test_backend/
https://github.com/anymail/django-anymail/issues/85
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2018-6596
https://anymail.dev/en/stable/tips/securing_webhooks/#use-a-shared-authorization-secret

Anymail Documentation, Release 10.1

v1.1

2017-10-28

Fixes

• Mailgun: Support metadata in opened/clicked/unsubscribed tracking webhooks, and fix potential problems if
metadata keys collided with Mailgun event parameter names. (See #76, #77)

Other

• Rework Anymail’s ParsedEmail class and rename to EmailAddress to align it with similar functionality in the
Python 3.6 email package, in preparation for future inbound support. ParsedEmail was not documented for use
outside Anymail’s internals (so this change does not bump the semver major version), but if you were using it in
an undocumented way you will need to update your code.

v1.0

2017-09-18

It’s official: Anymail is no longer “pre-1.0.” The API has been stable for many months, and there’s no reason not to use
Anymail in production.

Breaking changes

• There are no new breaking changes in the 1.0 release, but a breaking change introduced sev-
eral months ago in v0.8 is now strictly enforced. If you still have an EMAIL_BACKEND setting
that looks like “anymail.backends.*espname*.EspNameBackend”, you’ll need to change it to just “any-
mail.backends.*espname*.EmailBackend”. (Earlier versions had issued a DeprecationWarning. See the v0.8
release notes.)

Features

• Clean up and document Anymail’s Test EmailBackend

• Add notes on handling transient ESP errors and improving batch send performance

• SendGrid: handle Python 2 long integers in metadata and extra headers

v1.0.rc0

2017-09-09

1.9. Changelog 119

https://github.com/anymail/django-anymail/issues/76
https://github.com/anymail/django-anymail/issues/77
https://anymail.dev/en/stable/tips/test_backend/
https://anymail.dev/en/stable/tips/transient_errors/
https://anymail.dev/en/stable/tips/performance/

Anymail Documentation, Release 10.1

Breaking changes

• All backends: The old EspNameBackend names that were deprecated in v0.8 have been removed. Attempting
to use the old names will now fail, rather than issue a DeprecationWarning. See the v0.8 release notes.

Features

• Anymail’s Test EmailBackend is now documented (and cleaned up)

v0.11.1

2017-07-24

Fixes

• Mailjet: Correct settings docs.

v0.11

2017-07-13

Features

• Mailjet: Add support for this ESP. Thanks to @Lekensteyn and @calvin. (Docs)

• In webhook handlers, AnymailTrackingEvent.metadata now defaults to {}, and .tags defaults to [], if the ESP
does not supply these fields with the event. (See #67.)

v0.10

2017-05-22

Features

• Mailgun, SparkPost: Support multiple from addresses, as a comma-separated from_email string. (Not a list
of strings, like the recipient fields.) RFC-5322 allows multiple from email addresses, and these two ESPs support
it. Though as a practical matter, multiple from emails are either ignored or treated as a spam signal by receiving
mail handlers. (See #60.)

120 Chapter 1. Documentation

https://anymail.dev/en/stable/tips/test_backend/
https://github.com/Lekensteyn
https://github.com/calvin
https://anymail.dev/en/stable/esps/mailjet/
https://github.com/anymail/django-anymail/issues/67
https://github.com/anymail/django-anymail/issues/60

Anymail Documentation, Release 10.1

Fixes

• Fix crash sending forwarded email messages as attachments. (See #59.)

• Mailgun: Fix webhook crash on bounces from some receiving mail handlers. (See #62.)

• Improve recipient-parsing error messages and consistency with Django’s SMTP backend. In particular, Django
(and now Anymail) allows multiple, comma-separated email addresses in a single recipient string.

v0.9

2017-04-04

Breaking changes

• Mandrill, Postmark: Normalize soft-bounce webhook events to event_type ‘bounced’ (rather than ‘deferred’).

Features

• Officially support released Django 1.11, including under Python 3.6.

v0.8

2017-02-02

Breaking changes

• All backends: Rename all Anymail backends to just EmailBackend, matching Django’s naming convention.
E.g., you should update: EMAIL_BACKEND = "anymail.backends.mailgun.MailgunBackend" # old to:
EMAIL_BACKEND = "anymail.backends.mailgun.EmailBackend" # new

The old names still work, but will issue a DeprecationWarning and will be removed in some future release
(Apologies for this change; the old naming was a holdover from Djrill, and I wanted to establish consistency
with other Django EmailBackends before Anymail 1.0. See #49.)

• SendGrid: Update SendGrid backend to their newer Web API v3. This should be a transparent change for most
projects. Exceptions: if you use SendGrid username/password auth, Anymail’s esp_extra with “x-smtpapi”,
or multiple Reply-To addresses, please review the porting notes.

The SendGrid v2 EmailBackend remains available if you prefer it, but is no longer the default.

Features

• Test on Django 1.11 prerelease, including under Python 3.6.

1.9. Changelog 121

https://github.com/anymail/django-anymail/issues/59
https://github.com/anymail/django-anymail/issues/62
https://github.com/anymail/django-anymail/issues/49
https://anymail.dev/en/v3.0/esps/sendgrid/#sendgrid-v3-upgrade
https://anymail.dev/en/v3.0/esps/sendgrid/#sendgrid-v2-backend

Anymail Documentation, Release 10.1

Fixes

• Mandrill: Fix bug in webhook signature validation when using basic auth via the WEB-
HOOK_AUTHORIZATION setting. (If you were using the MANDRILL_WEBHOOK_URL setting to
work around this problem, you should be able to remove it. See #48.)

v0.7

2016-12-30

Breaking changes

• Fix a long-standing bug validating email addresses. If an address has a display name containing a
comma or parentheses, RFC-5322 requires double-quotes around the display name ('"Widgets, Inc."
<widgets@example.com>'). Anymail now raises a new AnymailInvalidAddress error for misquoted dis-
play names and other malformed addresses. (Previously, it silently truncated the address, leading to obscure
exceptions or unexpected behavior. If you were unintentionally relying on that buggy behavior, this may be a
breaking change. See #44.) In general, it’s safest to always use double-quotes around all display names.

Features

• Postmark: Support Postmark’s new message delivery event in Anymail normalized tracking webhook. (Update
your Postmark config to enable the new event. See docs.)

• Handle virtually all uses of Django lazy translation strings as EmailMessage properties. (In earlier releases, these
could sometimes lead to obscure exceptions or unexpected behavior with some ESPs. See #34.)

• Mandrill: Simplify and document two-phase process for setting up Mandrill webhooks (docs).

v0.6.1

2016-11-01

Fixes

• Mailgun, Mandrill: Support older Python 2.7.x versions in webhook validation (#39; thanks @sebbacon).

• Postmark: Handle older-style ‘Reply-To’ in EmailMessage headers (#41).

v0.6

2016-10-25

122 Chapter 1. Documentation

https://github.com/anymail/django-anymail/issues/48
https://github.com/anymail/django-anymail/issues/44
https://anymail.dev/en/stable/esps/postmark/#status-tracking-webhooks
https://github.com/anymail/django-anymail/issues/34
https://anymail.dev/en/stable/esps/mandrill/#status-tracking-webhooks
https://github.com/anymail/django-anymail/issues/39
https://github.com/sebbacon
https://github.com/anymail/django-anymail/issues/41

Anymail Documentation, Release 10.1

Breaking changes

• SendGrid: Fix missing html or text template body when using template_id with an empty Django EmailMes-
sage body. In the (extremely-unlikely) case you were relying on the earlier quirky behavior to not send your saved
html or text template, you may want to verify that your SendGrid templates have matching html and text. (docs
– also see #32.)

Features

• Postmark: Add support for track_clicks (docs)

• Initialize AnymailMessage.anymail_status to empty status, rather than None; clarify docs around
anymail_status availability (docs)

v0.5

2016-08-22

Features

• Mailgun: Add MAILGUN_SENDER_DOMAIN setting. (docs)

v0.4.2

2016-06-24

Fixes

• SparkPost: Fix API error “Both content object and template_id are specified” when using template_id (#24).

v0.4.1

2016-06-23

Features

• SparkPost: Add support for this ESP. (docs)

• Test with Django 1.10 beta

• Requests-based backends (all but SparkPost) now raise AnymailRequestsAPIError for any re-
quests.RequestException, for consistency and proper fail_silently behavior. (The exception will also be a
subclass of the original RequestException, so no changes are required to existing code looking for specific
requests failures.)

1.9. Changelog 123

https://anymail.dev/en/stable/esps/sendgrid/#batch-sending-merge-and-esp-templates
https://github.com/anymail/django-anymail/issues/32
https://anymail.dev/en/stable/esps/postmark/#limitations-and-quirks
https://anymail.dev/en/stable/sending/anymail_additions/#esp-send-status
https://anymail.dev/en/stable/esps/mailgun/#mailgun-sender-domain
https://github.com/anymail/django-anymail/issues/24
https://anymail.dev/en/stable/esps/sparkpost/

Anymail Documentation, Release 10.1

v0.4

(not released)

v0.3.1

2016-05-18

Fixes

• SendGrid: Fix API error that to is required when using merge_data (see #14; thanks @lewistaylor).

v0.3

2016-05-13

Features

• Add support for ESP stored templates and batch sending/merge. Exact capabilities vary widely by ESP – be sure
to read the notes for your ESP. (docs)

• Add pre_send and post_send signals. docs

• Mandrill: add support for esp_extra; deprecate Mandrill-specific message attributes left over from Djrill. See
migrating from Djrill.

v0.2

2016-04-30

Breaking changes

• Mailgun: eliminate automatic JSON encoding of complex metadata values like lists and dicts. (Was based on
misreading of Mailgun docs; behavior now matches metadata handling for all other ESPs.)

• Mandrill: remove obsolete wehook views and signal inherited from Djrill. See Djrill migration notes if you
were relying on that code.

Features

• Add support for ESP event-tracking webhooks, including normalized AnymailTrackingEvent. (docs)

• Allow get_connection kwargs overrides of most settings for individual backend instances. Can be useful for, e.g.,
working with multiple SendGrid subusers. (docs)

• SendGrid: Add SENDGRID_GENERATE_MESSAGE_ID setting to control workarounds for ensuring unique
tracking ID on SendGrid messages/events (default enabled). docs

• SendGrid: improve handling of ‘filters’ in esp_extra, making it easier to mix custom SendGrid app filter settings
with Anymail normalized message options.

124 Chapter 1. Documentation

https://github.com/anymail/django-anymail/issues/14
https://github.com/lewistaylor
https://anymail.dev/en/stable/sending/templates/
https://anymail.dev/en/stable/sending/signals/
https://anymail.dev/en/stable/esps/mandrill/#migrating-from-djrill
https://anymail.dev/en/stable/esps/mandrill/#changes-to-webhooks
https://anymail.dev/en/stable/sending/tracking/
https://anymail.dev/en/stable/installation/#anymail-settings-reference
https://anymail.dev/en/stable/esps/sendgrid/#sendgrid-message-id

Anymail Documentation, Release 10.1

Other

• Drop pre-Django 1.8 test code. (Wasn’t being used, as Anymail requires Django 1.8+.)

• Mandrill: note limited support in docs (because integration tests no longer available).

v0.1

2016-03-14

Although this is an early release, it provides functional Django EmailBackends and passes integration tests with all
supported ESPs (Mailgun, Mandrill, Postmark, SendGrid).

It has (obviously) not yet undergone extensive real-world testing, and you are encouraged to monitor it carefully if you
choose to use it in production. Please report bugs and problems here in GitHub.

Features

• Postmark: Add support for this ESP.

• SendGrid: Add support for username/password auth.

• Simplified install: no need to name the ESP (pip install django-anymail – not ...
django-anymail[mailgun])

0.1.dev2

2016-03-12

Features

• SendGrid: Add support for this ESP.

• Add attach_inline_image_file helper

Fixes

• Change inline-attachment handling to look for Content-Disposition: inline, and to preserve filenames
where supported by the ESP.

0.1.dev1

2016-03-10

1.9. Changelog 125

Anymail Documentation, Release 10.1

Features

• Mailgun, Mandrill: initial supported ESPs.

• Initial docs

1.10 Anymail documentation privacy

Anymail’s documentation site at anymail.dev is hosted by Read the Docs. Please see the Read the Docs Privacy Policy
for more about what information Read the Docs collects and how they use it.

Separately, Anymail’s maintainers have configured Google Analytics third-party tracking on this documentation site.
We (Anymail’s maintainers) use this analytics data to better understand how these docs are used, for the purpose of
improving the content. Google Analytics helps us answer questions like:

• what docs pages are most and least viewed

• what terms people search for in the documentation

• what paths readers (in general) tend to take through the docs

But we’re not able to identify any particular person or track individual behavior. Anymail’s maintainers do not collect
or have access to any personally identifiable (or even potentially personally identifiable) information about visitors to
this documentation site.

We also use Google Analytics to collect feedback from the “Is this page helpful?” box at the bottom of the page. Please
do not include any personally-identifiable information in suggestions you submit through this form. (If you would like
to contact Anymail’s maintainers, see Getting support.)

Anymail’s maintainers have not connected our Google Analytics implementation to any Google Advertising Services.
(Incidentally, we’re not involved with the ads you may see here. Those come from—and support—Read the Docs under
their ethical ads model.)

The developer audience for Anymail’s docs is likely already familiar with site analytics, tracking cookies, and related
concepts. To learn more about how Google Analytics uses cookies and how to opt out of analytics tracking, see
the “Information for Visitors of Sites and Apps Using Google Analytics” section of Google’s Safeguarding your data
document.

Questions about privacy and information practices related to this Anymail documentation site can be emailed to pri-
vacy<at>anymail<dot>dev. (This is not an appropriate contact for questions about using Anymail; see Help if you
need assistance with your code.)

126 Chapter 1. Documentation

https://anymail.dev/
https://docs.readthedocs.io/en/latest/privacy-policy.html
https://docs.readthedocs.io/en/latest/ethical-advertising.html
https://support.google.com/analytics/answer/6004245

PYTHON MODULE INDEX

a
anymail.exceptions, 29
anymail.message, 11
anymail.signals, 22

127

Anymail Documentation, Release 10.1

128 Python Module Index

INDEX

A
ANYMAIL

setting, 7
anymail.exceptions

module, 29
anymail.inbound.AnymailInboundMessage (built-in

class), 31
anymail.message

module, 11
anymail.signals

module, 22
anymail.signals.AnymailInboundEvent (built-in

class), 30
anymail.signals.post_send (built-in variable), 28
anymail.signals.pre_send (built-in variable), 27
ANYMAIL_AMAZON_SES_AUTO_CONFIRM_SNS_SUBSCRIPTIONS

setting, 45
ANYMAIL_AMAZON_SES_CLIENT_PARAMS

setting, 44
ANYMAIL_AMAZON_SES_CONFIGURATION_SET_NAME

setting, 44
ANYMAIL_AMAZON_SES_MESSAGE_TAG_NAME

setting, 45
ANYMAIL_AMAZON_SES_SESSION_PARAMS

setting, 44
ANYMAIL_DEBUG_API_REQUESTS

setting, 8
ANYMAIL_IGNORE_RECIPIENT_STATUS

setting, 7
ANYMAIL_IGNORE_UNSUPPORTED_FEATURES

setting, 11
ANYMAIL_MAILERSEND_API_TOKEN

setting, 50
ANYMAIL_MAILERSEND_API_URL

setting, 51
ANYMAIL_MAILERSEND_BATCH_SEND_MODE

setting, 50
ANYMAIL_MAILERSEND_INBOUND_SECRET

setting, 51
ANYMAIL_MAILERSEND_SIGNING_SECRET

setting, 51
ANYMAIL_MAILGUN_API_KEY

setting, 57
ANYMAIL_MAILGUN_API_URL

setting, 57
ANYMAIL_MAILGUN_SENDER_DOMAIN

setting, 57
ANYMAIL_MAILGUN_WEBHOOK_SIGNING_KEY

setting, 58
ANYMAIL_MAILJET_API_KEY

setting, 64
ANYMAIL_MAILJET_API_URL

setting, 64
ANYMAIL_MANDRILL_API_KEY

setting, 68
ANYMAIL_MANDRILL_API_URL

setting, 68
ANYMAIL_MANDRILL_WEBHOOK_KEY

setting, 68
ANYMAIL_MANDRILL_WEBHOOK_URL

setting, 68
ANYMAIL_POSTAL_API_KEY

setting, 73
ANYMAIL_POSTAL_API_URL

setting, 73
ANYMAIL_POSTAL_WEBHOOK_KEY

setting, 73
ANYMAIL_POSTMARK_API_URL

setting, 75
ANYMAIL_POSTMARK_SERVER_TOKEN

setting, 75
ANYMAIL_REQUESTS_TIMEOUT

setting, 8
ANYMAIL_SEND_DEFAULTS

setting, 18
ANYMAIL_SENDGRID_API_KEY

setting, 78
ANYMAIL_SENDGRID_API_URL

setting, 79
ANYMAIL_SENDGRID_GENERATE_MESSAGE_ID

setting, 79
ANYMAIL_SENDGRID_MERGE_FIELD_FORMAT

setting, 79
ANYMAIL_SENDINBLUE_API_KEY

129

Anymail Documentation, Release 10.1

setting, 47
ANYMAIL_SENDINBLUE_API_URL

setting, 47
ANYMAIL_SPARKPOST_API_KEY

setting, 84
ANYMAIL_SPARKPOST_API_URL

setting, 85
ANYMAIL_SPARKPOST_SUBACCOUNT

setting, 84
ANYMAIL_SPARKPOST_TRACK_INITIAL_OPEN_AS_OPENED

setting, 85
anymail_status (anymail.message.AnymailMessage at-

tribute), 15
ANYMAIL_WEBHOOK_SECRET

setting, 93
AnymailAPIError, 29
AnymailInboundMessage (built-in class), 33
AnymailInvalidAddress, 29
AnymailMessage (class in anymail.message), 12
AnymailMessageMixin (class in anymail.message), 19
AnymailRecipientsRefused, 29
AnymailSerializationError, 29
AnymailStatus (class in anymail.message), 15
AnymailTrackingEvent (class in anymail.signals), 23
AnymailUnsupportedFeature, 29
as_uploaded_file() (AnymailInboundMessage

method), 33
attach_inline_image() (any-

mail.message.AnymailMessage method),
15

attach_inline_image() (in module anymail.message),
17

attach_inline_image_file() (any-
mail.message.AnymailMessage method),
15

attach_inline_image_file() (in module any-
mail.message), 17

attachments (anymail.inbound.AnymailInboundMessage
attribute), 32

C
cc (anymail.inbound.AnymailInboundMessage attribute),

32
click_url (anymail.signals.AnymailTrackingEvent at-

tribute), 25
content_id_map (any-

mail.inbound.AnymailInboundMessage at-
tribute), 33

D
date (anymail.inbound.AnymailInboundMessage at-

tribute), 32
description (anymail.signals.AnymailTrackingEvent

attribute), 25

E
envelope_recipient (any-

mail.inbound.AnymailInboundMessage at-
tribute), 31

envelope_sender (any-
mail.inbound.AnymailInboundMessage at-
tribute), 31

envelope_sender (anymail.message.AnymailMessage
attribute), 13

esp_event (anymail.signals.AnymailInboundEvent at-
tribute), 31

esp_event (anymail.signals.AnymailTrackingEvent at-
tribute), 25

esp_extra (anymail.message.AnymailMessage at-
tribute), 14

esp_response (anymail.message.AnymailStatus at-
tribute), 17

event_id (anymail.signals.AnymailInboundEvent
attribute), 31

event_id (anymail.signals.AnymailTrackingEvent
attribute), 24

event_type (anymail.signals.AnymailInboundEvent at-
tribute), 30

event_type (anymail.signals.AnymailTrackingEvent at-
tribute), 23

F
from_email (anymail.inbound.AnymailInboundMessage

attribute), 31

G
get_content_bytes() (AnymailInboundMessage

method), 34
get_content_disposition() (AnymailInboundMes-

sage method), 34
get_content_maintype() (AnymailInboundMessage

method), 34
get_content_subtype() (AnymailInboundMessage

method), 34
get_content_text() (AnymailInboundMessage

method), 34
get_content_type() (AnymailInboundMessage

method), 34
get_filename() (AnymailInboundMessage method), 34

H
html (anymail.inbound.AnymailInboundMessage at-

tribute), 32

I
inlines (anymail.inbound.AnymailInboundMessage at-

tribute), 32

130 Index

Anymail Documentation, Release 10.1

is_attachment() (AnymailInboundMessage method),
34

is_inline() (AnymailInboundMessage method), 34

M
merge_data (anymail.message.AnymailMessage at-

tribute), 21
merge_global_data (any-

mail.message.AnymailMessage attribute),
21

merge_metadata (anymail.message.AnymailMessage at-
tribute), 13

message (anymail.signals.AnymailInboundEvent at-
tribute), 30

message_id (anymail.message.AnymailStatus attribute),
15

message_id (anymail.signals.AnymailTrackingEvent at-
tribute), 24

metadata (anymail.message.AnymailMessage attribute),
13

metadata (anymail.signals.AnymailTrackingEvent
attribute), 24

module
anymail.exceptions, 29
anymail.message, 11
anymail.signals, 22

mta_response (anymail.signals.AnymailTrackingEvent
attribute), 25

R
recipient (anymail.signals.AnymailTrackingEvent at-

tribute), 24
recipients (anymail.message.AnymailStatus attribute),

16
reject_reason (anymail.signals.AnymailTrackingEvent

attribute), 24
RFC

RFC 2822, 15
RFC 5322, 29

S
send_at (anymail.message.AnymailMessage attribute),

14
setting

ANYMAIL, 7
ANYMAIL_AMAZON_SES_AUTO_CONFIRM_SNS_SUBSCRIPTIONS,

45
ANYMAIL_AMAZON_SES_CLIENT_PARAMS, 44
ANYMAIL_AMAZON_SES_CONFIGURATION_SET_NAME,

44
ANYMAIL_AMAZON_SES_MESSAGE_TAG_NAME, 45
ANYMAIL_AMAZON_SES_SESSION_PARAMS, 44
ANYMAIL_DEBUG_API_REQUESTS, 8
ANYMAIL_IGNORE_RECIPIENT_STATUS, 7

ANYMAIL_IGNORE_UNSUPPORTED_FEATURES, 11
ANYMAIL_MAILERSEND_API_TOKEN, 50
ANYMAIL_MAILERSEND_API_URL, 51
ANYMAIL_MAILERSEND_BATCH_SEND_MODE, 50
ANYMAIL_MAILERSEND_INBOUND_SECRET, 51
ANYMAIL_MAILERSEND_SIGNING_SECRET, 51
ANYMAIL_MAILGUN_API_KEY, 57
ANYMAIL_MAILGUN_API_URL, 57
ANYMAIL_MAILGUN_SENDER_DOMAIN, 57
ANYMAIL_MAILGUN_WEBHOOK_SIGNING_KEY, 58
ANYMAIL_MAILJET_API_KEY, 64
ANYMAIL_MAILJET_API_URL, 64
ANYMAIL_MANDRILL_API_KEY, 68
ANYMAIL_MANDRILL_API_URL, 68
ANYMAIL_MANDRILL_WEBHOOK_KEY, 68
ANYMAIL_MANDRILL_WEBHOOK_URL, 68
ANYMAIL_POSTAL_API_KEY, 73
ANYMAIL_POSTAL_API_URL, 73
ANYMAIL_POSTAL_WEBHOOK_KEY, 73
ANYMAIL_POSTMARK_API_URL, 75
ANYMAIL_POSTMARK_SERVER_TOKEN, 75
ANYMAIL_REQUESTS_TIMEOUT, 8
ANYMAIL_SEND_DEFAULTS, 18
ANYMAIL_SENDGRID_API_KEY, 78
ANYMAIL_SENDGRID_API_URL, 79
ANYMAIL_SENDGRID_GENERATE_MESSAGE_ID, 79
ANYMAIL_SENDGRID_MERGE_FIELD_FORMAT, 79
ANYMAIL_SENDINBLUE_API_KEY, 47
ANYMAIL_SENDINBLUE_API_URL, 47
ANYMAIL_SPARKPOST_API_KEY, 84
ANYMAIL_SPARKPOST_API_URL, 85
ANYMAIL_SPARKPOST_SUBACCOUNT, 84
ANYMAIL_SPARKPOST_TRACK_INITIAL_OPEN_AS_OPENED,

85
ANYMAIL_WEBHOOK_SECRET, 93

spam_detected (anymail.inbound.AnymailInboundMessage
attribute), 33

spam_score (anymail.inbound.AnymailInboundMessage
attribute), 33

status (anymail.message.AnymailStatus attribute), 16
stripped_html (anymail.inbound.AnymailInboundMessage

attribute), 33
stripped_text (anymail.inbound.AnymailInboundMessage

attribute), 33
subject (anymail.inbound.AnymailInboundMessage at-

tribute), 32

T
tags (anymail.message.AnymailMessage attribute), 14
tags (anymail.signals.AnymailTrackingEvent attribute),

24
template_id (anymail.message.AnymailMessage

attribute), 20

Index 131

Anymail Documentation, Release 10.1

text (anymail.inbound.AnymailInboundMessage at-
tribute), 32

timestamp (anymail.signals.AnymailInboundEvent at-
tribute), 30

timestamp (anymail.signals.AnymailTrackingEvent at-
tribute), 24

to (anymail.inbound.AnymailInboundMessage attribute),
32

track_clicks (anymail.message.AnymailMessage at-
tribute), 14

track_opens (anymail.message.AnymailMessage
attribute), 14

U
user_agent (anymail.signals.AnymailTrackingEvent at-

tribute), 25

132 Index

	Documentation
	Anymail 1-2-3
	Installation and configuration
	Installing Anymail
	Configuring Django’s email backend
	Configuring tracking and inbound webhooks
	Anymail settings reference

	Sending email
	Django email support
	HTML email
	Attachments
	Additional headers
	Unsupported features
	Refused recipients

	Anymail additions
	ESP send options (AnymailMessage)
	ESP send status
	Inline images
	Global send defaults
	AnymailMessageMixin

	Batch sending/merge and ESP templates
	ESP stored templates
	Batch sending with merge data
	Formatting merge data
	ESP templates vs. Django templates

	Tracking sent mail status
	Normalized tracking event
	Signal receiver functions

	Pre- and post-send signals
	Pre-send signal
	Post-send signal

	Exceptions

	Receiving mail
	Normalized inbound event
	Normalized inbound message
	Attached and inline content
	Inbound signal receiver functions

	Supported ESPs
	Amazon SES
	Installation
	Migrating to the SES v2 API
	Using SES v1 (deprecated)

	Limitations and quirks
	Tags and metadata
	esp_extra support
	Batch sending/merge and ESP templates
	Status tracking webhooks
	Inbound webhook
	Confirming SNS subscriptions
	Settings
	IAM permissions

	Brevo
	Settings
	esp_extra support
	Limitations and quirks
	Batch sending/merge and ESP templates
	Status tracking webhooks
	Inbound webhook

	MailerSend
	Settings
	exp_extra support
	Limitations and quirks
	Batch sending/merge and ESP templates
	Batch send mode

	Status tracking webhooks
	Inbound routing

	Mailgun
	Settings
	Email sender domain
	exp_extra support
	Limitations and quirks
	Batch sending/merge and ESP templates
	Limitations with stored handlebars templates

	Status tracking webhooks
	Inbound webhook

	Mailjet
	Settings
	esp_extra support
	Limitations and quirks
	Batch sending/merge and ESP templates
	Status tracking webhooks
	Inbound webhook

	Mandrill
	Settings
	esp_extra support
	Limitations and quirks
	Batch sending/merge and ESP templates
	Status tracking and inbound webhooks
	Migrating from Djrill
	Changes to settings
	Changes to EmailMessage attributes
	Changes to webhooks

	Postal
	Settings
	esp_extra support
	Limitations and quirks
	Batch sending/merge and ESP templates
	Status tracking webhooks
	Inbound webhook

	Postmark
	Settings
	esp_extra support
	Limitations and quirks
	Batch sending/merge and ESP templates
	Status tracking webhooks
	Inbound webhook

	SendGrid
	Settings
	esp_extra support
	Limitations and quirks
	Batch sending/merge and ESP templates
	Legacy transactional templates
	On-the-fly templates

	Status tracking webhooks
	Inbound webhook

	SparkPost
	Settings
	esp_extra support
	Limitations and quirks
	Batch sending/merge and ESP templates
	Status tracking webhooks
	Inbound webhook

	Anymail feature support
	Other ESPs

	Tips, tricks, and advanced usage
	Handling transient errors
	Automatic retries

	Mixing email backends
	Using Django templates for email
	Helpful add-ons

	Securing webhooks
	Use https
	Use a shared authentication secret
	Signed webhooks
	Additional steps

	Testing your app
	Testing sending mail
	Testing tracking webhooks
	Testing receiving mail

	Batch send performance

	Help
	Getting support
	Troubleshooting

	Contributing
	Contributors
	Bugs
	Pull requests
	Testing
	Documentation

	Changelog
	Release history
	v10.1
	Features
	Deprecations

	v10.0
	Breaking changes
	Features
	Other

	v9.2
	Fixes
	Deprecations
	Other

	v9.1
	Features
	Deprecations
	Other

	v9.0
	Breaking changes
	Features
	Fixes
	Other

	v8.6 LTS
	Fixes
	Other
	Deprecations

	v8.5
	Fixes
	Other

	v8.4
	Features

	v8.3
	Fixes

	v8.2
	Features
	Fixes
	Other

	v8.1
	Features

	v8.0
	Breaking changes
	Features

	v7.2.1
	Fixes

	v7.2 LTS
	Fixes
	Features
	Deprecations

	v7.1
	Fixes
	Features
	Other

	v7.0
	Breaking changes
	Features
	Other

	v6.1
	Features

	v6.0.1
	Fixes

	v6.0
	Breaking changes
	Features
	Fixes

	v5.0
	Breaking changes
	Features
	Fixes

	v4.3
	Features
	Fixes
	Other

	v4.2
	Features
	Fixes

	v4.1
	Features

	v4.0
	Breaking changes
	Features
	Fixes
	Other

	v3.0
	Breaking changes
	Features
	Fixes
	Deprecations

	v2.2
	Fixes

	v2.1
	Features
	Fixes
	Other
	Deprecations

	v2.0
	Breaking changes
	Features
	Other

	v1.4
	Security

	v1.3
	Security
	Features

	v1.2.1
	Security

	v1.2
	Features

	v1.1
	Fixes
	Other

	v1.0
	Breaking changes
	Features

	v1.0.rc0
	Breaking changes
	Features

	v0.11.1
	Fixes

	v0.11
	Features

	v0.10
	Features
	Fixes

	v0.9
	Breaking changes
	Features

	v0.8
	Breaking changes
	Features
	Fixes

	v0.7
	Breaking changes
	Features

	v0.6.1
	Fixes

	v0.6
	Breaking changes
	Features

	v0.5
	Features

	v0.4.2
	Fixes

	v0.4.1
	Features

	v0.4
	v0.3.1
	Fixes

	v0.3
	Features

	v0.2
	Breaking changes
	Features
	Other

	v0.1
	Features

	0.1.dev2
	Features
	Fixes

	0.1.dev1
	Features

	Anymail documentation privacy

	Python Module Index
	Index

