

Anymail: Django email integration for transactional ESPs

Version 6.0

Anymail integrates several transactional email service providers (ESPs) into Django,
with a consistent API that lets you use ESP-added features without locking your code
to a particular ESP.

It currently fully supports Amazon SES, Mailgun, Mailjet, Postmark, SendinBlue, SendGrid,
and SparkPost, and has limited support for Mandrill.

Anymail normalizes ESP functionality so it “just works” with Django’s
built-in django.core.mail [https://docs.djangoproject.com/en/stable/topics/email/#module-django.core.mail] package. It includes:

	Support for HTML, attachments, extra headers, and other features of
Django’s built-in email [https://docs.djangoproject.com/en/stable/topics/email/]

	Extensions that make it easy to use extra ESP functionality, like tags, metadata,
and tracking, with code that’s portable between ESPs

	Simplified inline images for HTML email

	Normalized sent-message status and tracking notification, by connecting
your ESP’s webhooks to Django signals

	“Batch transactional” sends using your ESP’s merge and template features

	Inbound message support, to receive email through your ESP’s webhooks,
with simplified, portable access to attachments and other inbound content

Anymail is released under the BSD license. It is extensively tested against
Django 1.11–2.1 (including Python 2.7, Python 3 and PyPy).
Anymail releases follow semantic versioning [http://semver.org/].

Documentation

Using Anymail

	Anymail 1-2-3

	Installation and configuration
	Installing Anymail

	Configuring Django’s email backend

	Configuring tracking and inbound webhooks

	Anymail settings reference

	Sending email
	Django email support

	Anymail additions

	Batch sending/merge and ESP templates

	Tracking sent mail status

	Pre- and post-send signals

	Exceptions

	Receiving mail
	Normalized inbound event

	Normalized inbound message

	Handling Inbound Attachments

	Inbound signal receiver functions

	Supported ESPs
	Amazon SES

	Mailgun

	Mailjet

	Mandrill

	Postmark

	SendGrid

	SendinBlue

	SparkPost

	Anymail feature support

	Other ESPs

	Tips, tricks, and advanced usage
	Handling transient errors

	Mixing email backends

	Using Django templates for email

	Securing webhooks

	Testing your app

	Batch send performance

	Help
	Troubleshooting

	Support

About Anymail

	Contributing
	Contributors

	Bugs

	Pull requests

	Testing

	Documentation

	Changelog
	Release history

	Docs privacy

Anymail 1-2-3

Here’s how to send a message.
This example uses Mailgun, but you can substitute Mailjet or Postmark or SendGrid
or SparkPost or any other supported ESP where you see “mailgun”:

	Install Anymail from PyPI:

$ pip install django-anymail[mailgun]

(The [mailgun] part installs any additional packages needed for that ESP.
Mailgun doesn’t have any, but some other ESPs do.)

	Edit your project’s settings.py:

INSTALLED_APPS = [
 # ...
 "anymail",
 # ...
]

ANYMAIL = {
 # (exact settings here depend on your ESP...)
 "MAILGUN_API_KEY": "<your Mailgun key>",
 "MAILGUN_SENDER_DOMAIN": 'mg.example.com', # your Mailgun domain, if needed
}
EMAIL_BACKEND = "anymail.backends.mailgun.EmailBackend" # or sendgrid.EmailBackend, or...
DEFAULT_FROM_EMAIL = "you@example.com" # if you don't already have this in settings
SERVER_EMAIL = "your-server@example.com" # ditto (default from-email for Django errors)

	Now the regular Django email functions [https://docs.djangoproject.com/en/stable/topics/email/]
will send through your chosen ESP:

from django.core.mail import send_mail

send_mail("It works!", "This will get sent through Mailgun",
 "Anymail Sender <from@example.com>", ["to@example.com"])

You could send an HTML message, complete with an inline image,
custom tags and metadata:

from django.core.mail import EmailMultiAlternatives
from anymail.message import attach_inline_image_file

msg = EmailMultiAlternatives(
 subject="Please activate your account",
 body="Click to activate your account: http://example.com/activate",
 from_email="Example <admin@example.com>",
 to=["New User <user1@example.com>", "account.manager@example.com"],
 reply_to=["Helpdesk <support@example.com>"])

Include an inline image in the html:
logo_cid = attach_inline_image_file(msg, "/path/to/logo.jpg")
html = """
 <p>Please activate
 your account</p>""".format(logo_cid=logo_cid)
msg.attach_alternative(html, "text/html")

Optional Anymail extensions:
msg.metadata = {"user_id": "8675309", "experiment_variation": 1}
msg.tags = ["activation", "onboarding"]
msg.track_clicks = True

Send it:
msg.send()

Problems? We have some Troubleshooting info that may help.

Now what?

Now that you’ve got Anymail working, you might be interested in:

	Sending email with Anymail

	Receiving inbound email

	ESP-specific information

	All the docs

Installation and configuration

Installing Anymail

To use Anymail in your Django project:

	Install the django-anymail app. It’s easiest to install from PyPI using pip:

$ pip install django-anymail[sendgrid,sparkpost]

The [sendgrid,sparkpost] part of that command tells pip you also
want to install additional packages required for those ESPs.
You can give one or more comma-separated, lowercase ESP names.
(Most ESPs don’t have additional requirements, so you can often
just skip this. Or change your mind later. Anymail will let you know
if there are any missing dependencies when you try to use it.)

	Edit your Django project’s settings.py, and add anymail
to your INSTALLED_APPS [https://docs.djangoproject.com/en/stable/ref/settings/#std:setting-INSTALLED_APPS] (anywhere in the list):

INSTALLED_APPS = [
 # ...
 "anymail",
 # ...
]

	Also in settings.py, add an ANYMAIL settings dict,
substituting the appropriate settings for your ESP. E.g.:

ANYMAIL = {
 "MAILGUN_API_KEY": "<your Mailgun key>",
}

The exact settings vary by ESP.
See the supported ESPs section for specifics.

Then continue with either or both of the next two sections, depending
on which Anymail features you want to use.

Configuring Django’s email backend

To use Anymail for sending email from Django, make additional changes
in your project’s settings.py. (Skip this section if you are only
planning to receive email.)

	Change your existing Django EMAIL_BACKEND [https://docs.djangoproject.com/en/stable/ref/settings/#std:setting-EMAIL_BACKEND] to the Anymail backend
for your ESP. For example, to send using Mailgun by default:

EMAIL_BACKEND = "anymail.backends.mailgun.EmailBackend"

(EMAIL_BACKEND [https://docs.djangoproject.com/en/stable/ref/settings/#std:setting-EMAIL_BACKEND] sets Django’s default for sending emails; you can also
use multiple Anymail backends to send particular
messages through different ESPs.)

	If you don’t already have DEFAULT_FROM_EMAIL [https://docs.djangoproject.com/en/stable/ref/settings/#std:setting-DEFAULT_FROM_EMAIL] and SERVER_EMAIL [https://docs.djangoproject.com/en/stable/ref/settings/#std:setting-SERVER_EMAIL]
in your settings, this is a good time to add them. (Django’s defaults are
“webmaster@localhost” and “root@localhost”, respectively, and most ESPs won’t
allow sending from those addresses.)

With the settings above, you are ready to send outgoing email through your ESP.
If you also want to enable status tracking or inbound handling, continue with the
settings below. Otherwise, skip ahead to Sending email.

Configuring tracking and inbound webhooks

Anymail can optionally connect to your ESP’s event webhooks to notify your app of:

	status tracking events for sent email, like bounced or rejected messages,
successful delivery, message opens and clicks, etc.

	inbound message events, if you are set up to receive email through your ESP

Skip this section if you won’t be using Anymail’s webhooks.

Warning

Webhooks are ordinary urls, and are wide open to the internet.
You must use care to avoid creating security vulnerabilities
that could expose your users’ emails and other private information,
or subject your app to malicious input data.

At a minimum, your site should use https and you should
configure a webhook secret as described below.

See Securing webhooks for additional information.

If you want to use Anymail’s inbound or tracking webhooks:

	In your settings.py, add
WEBHOOK_SECRET
to the ANYMAIL block:

ANYMAIL = {
 ...
 'WEBHOOK_SECRET': '<a random string>:<another random string>',
}

This setting should be a string with two sequences of random characters,
separated by a colon. It is used as a shared secret, known only to your ESP
and your Django app, to ensure nobody else can call your webhooks.

We suggest using 16 characters (or more) for each half of the
secret. Always generate a new, random secret just for this purpose.
(Don’t use your Django secret key or ESP’s API key.)

An easy way to generate a random secret is to run this command in
a shell:

$ python -c "from django.utils import crypto; print(':'.join(crypto.get_random_string(16) for _ in range(2)))"

(This setting is actually an HTTP basic auth string. You can also set it
to a list of auth strings, to simplify credential rotation or use different auth
with different ESPs. See ANYMAIL_WEBHOOK_SECRET in the
Securing webhooks docs for more details.)

	In your project’s urls.py, add routing for the Anymail webhook urls:

from django.conf.urls import include, url

urlpatterns = [
 ...
 url(r'^anymail/', include('anymail.urls')),
]

(You can change the “anymail” prefix in the first parameter to
url() [https://docs.djangoproject.com/en/stable/ref/urls/#django.conf.urls.url] if you’d like the webhooks to be served
at some other URL. Just match whatever you use in the webhook URL you give
your ESP in the next step.)

	Enter the webhook URL(s) into your ESP’s dashboard or control panel.
In most cases, the URL will be:

https://random:random@yoursite.example.com/anymail/esp/type/

	“https” (rather than http) is strongly recommended

	random:random is the WEBHOOK_SECRET string you created in step 1

	yoursite.example.com is your Django site

	“anymail” is the url prefix (from step 2)

	esp is the lowercase name of your ESP (e.g., “sendgrid” or “mailgun”)

	type is either “tracking” for Anymail’s sent-mail event tracking webhooks,
or “inbound” for receiving email

Some ESPs support different webhooks for different tracking events. You can
usually enter the same Anymail tracking webhook URL for all of them (or all that you
want to receive)—but be sure to use the separate inbound URL for inbound webhooks.
And always check the specific details for your ESP under Supported ESPs.

Also, some ESPs try to validate the webhook URL immediately when you enter it.
If so, you’ll need to deploy your Django project to your live server before you
can complete this step.

Some WSGI servers may need additional settings to pass HTTP authorization headers
through to Django. For example, Apache with mod_wsgi [http://modwsgi.readthedocs.io/en/latest/configuration-directives/WSGIPassAuthorization.html] requires
WSGIPassAuthorization On, else Anymail will complain about “missing or invalid
basic auth” when your webhook is called.

See Tracking sent mail status for information on creating signal handlers and the
status tracking events you can receive. See Receiving mail for information on
receiving inbound message events.

Anymail settings reference

You can add Anymail settings to your project’s settings.py either as
a single ANYMAIL dict, or by breaking out individual settings prefixed with
ANYMAIL_. So this settings dict:

ANYMAIL = {
 "MAILGUN_API_KEY": "12345",
 "SEND_DEFAULTS": {
 "tags": ["myapp"]
 },
}

…is equivalent to these individual settings:

ANYMAIL_MAILGUN_API_KEY = "12345"
ANYMAIL_SEND_DEFAULTS = {"tags": ["myapp"]}

In addition, for some ESP settings like API keys, Anymail will look for a setting
without the ANYMAIL_ prefix if it can’t find the Anymail one. (This can be helpful
if you are using other Django apps that work with the same ESP.)

MAILGUN_API_KEY = "12345" # used only if neither ANYMAIL["MAILGUN_API_KEY"]
 # nor ANYMAIL_MAILGUN_API_KEY have been set

Finally, for complex use cases, you can override most settings on a per-instance
basis by providing keyword args where the instance is initialized (e.g., in a
get_connection() [https://docs.djangoproject.com/en/stable/topics/email/#django.core.mail.get_connection] call to create an email backend instance,
or in View.as_view() call to set up webhooks in a custom urls.py). To get the kwargs
parameter for a setting, drop “ANYMAIL” and the ESP name, and lowercase the rest:
e.g., you can override ANYMAIL_MAILGUN_API_KEY by passing api_key="abc" to
get_connection() [https://docs.djangoproject.com/en/stable/topics/email/#django.core.mail.get_connection]. See Mixing email backends for an example.

There are specific Anymail settings for each ESP (like API keys and urls).
See the supported ESPs section for details.
Here are the other settings Anymail supports:

IGNORE_RECIPIENT_STATUS

Set to True [https://docs.python.org/3.6/library/constants.html#True] to disable AnymailRecipientsRefused exceptions
on invalid or rejected recipients. (Default False [https://docs.python.org/3.6/library/constants.html#False].)
See Refused recipients.

ANYMAIL = {
 ...
 "IGNORE_RECIPIENT_STATUS": True,
}

SEND_DEFAULTS and ESP_SEND_DEFAULTS`

A dict [https://docs.python.org/3.6/library/stdtypes.html#dict] of default options to apply to all messages sent through Anymail.
See Global send defaults.

IGNORE_UNSUPPORTED_FEATURES

Whether Anymail should raise AnymailUnsupportedFeature
errors for email with features that can’t be accurately communicated to the ESP.
Set to True [https://docs.python.org/3.6/library/constants.html#True] to ignore these problems and send the email anyway. See
Unsupported features. (Default False [https://docs.python.org/3.6/library/constants.html#False].)

WEBHOOK_SECRET

A 'random:random' shared secret string. Anymail will reject incoming webhook calls
from your ESP that don’t include this authentication. You can also give a list of
shared secret strings, and Anymail will allow ESP webhook calls that match any of them
(to facilitate credential rotation). See Securing webhooks.

Default is unset, which leaves your webhooks insecure. Anymail
will warn if you try to use webhooks without a shared secret.

This is actually implemented using HTTP basic authentication, and the string is
technically a “username:password” format. But you should not use any real
username or password for this shared secret.

Changed in version 1.4: The earlier WEBHOOK_AUTHORIZATION setting was renamed WEBHOOK_SECRET, so that
Django error reporting sanitizes it. Support for the old name was dropped in
Anymail 2.0, and if you have not yet updated your settings.py, all webhook calls
will fail with a “missing or invalid basic auth” error.

REQUESTS_TIMEOUT

New in version 1.3.

For Requests-based Anymail backends, the timeout value used for all API calls to your ESP.
The default is 30 seconds. You can set to a single float, a 2-tuple of floats for
separate connection and read timeouts, or None [https://docs.python.org/3.6/library/constants.html#None] to disable timeouts (not recommended).
See Timeouts [http://docs.python-requests.org/en/latest/user/advanced/#timeouts] in the Requests docs for more information.

Sending email

	Django email support
	HTML email

	Attachments

	Additional headers

	Unsupported features

	Refused recipients

	Anymail additions
	ESP send options (AnymailMessage)

	ESP send status

	Inline images

	Global send defaults

	AnymailMessageMixin

	Batch sending/merge and ESP templates
	ESP stored templates

	Batch sending with merge data

	Formatting merge data

	ESP templates vs. Django templates

	Tracking sent mail status
	Normalized tracking event

	Signal receiver functions

	Pre- and post-send signals
	Pre-send signal

	Post-send signal

	Exceptions

Django email support

Anymail builds on Django’s core email functionality. If you are already sending
email using Django’s default SMTP EmailBackend [https://docs.djangoproject.com/en/stable/topics/email/#django.core.mail.backends.smtp.EmailBackend],
switching to Anymail will be easy. Anymail is designed to “just work” with Django.

If you’re not familiar with Django’s email functions, please take a look at
“sending email [https://docs.djangoproject.com/en/stable/topics/email/#module-django.core.mail]” in the Django docs first.

Anymail supports most of the functionality of Django’s EmailMessage [https://docs.djangoproject.com/en/stable/topics/email/#django.core.mail.EmailMessage]
and EmailMultiAlternatives classes.

Anymail handles all outgoing email sent through Django’s
django.core.mail [https://docs.djangoproject.com/en/stable/topics/email/#module-django.core.mail] module, including send_mail() [https://docs.djangoproject.com/en/stable/topics/email/#django.core.mail.send_mail],
send_mass_mail() [https://docs.djangoproject.com/en/stable/topics/email/#django.core.mail.send_mass_mail], the EmailMessage [https://docs.djangoproject.com/en/stable/topics/email/#django.core.mail.EmailMessage] class,
and even mail_admins() [https://docs.djangoproject.com/en/stable/topics/email/#django.core.mail.mail_admins].
If you’d like to selectively send only some messages through Anymail,
or you’d like to use different ESPs for particular messages,
there are ways to use multiple email backends.

HTML email

To send an HTML message, you can simply use Django’s send_mail() [https://docs.djangoproject.com/en/stable/topics/email/#django.core.mail.send_mail]
function with the html_message parameter:

from django.core.mail import send_mail

send_mail("Subject", "text body", "from@example.com",
 ["to@example.com"], html_message="<html>html body</html>")

However, many Django email capabilities – and additional Anymail features –
are only available when working with an EmailMultiAlternatives
object. Use its attach_alternative()
method to send HTML:

from django.core.mail import EmailMultiAlternatives

msg = EmailMultiAlternatives("Subject", "text body",
 "from@example.com", ["to@example.com"])
msg.attach_alternative("<html>html body</html>", "text/html")
you can set any other options on msg here, then...
msg.send()

It’s good practice to send equivalent content in your plain-text body
and the html version.

Attachments

Anymail will send a message’s attachments to your ESP. You can add attachments
with the attach() or
attach_file() methods
of Django’s EmailMessage [https://docs.djangoproject.com/en/stable/topics/email/#django.core.mail.EmailMessage].

Note that some ESPs impose limits on the size and type of attachments they
will send.

Inline images

If your message has any attachments with Content-Disposition: inline
headers, Anymail will tell your ESP to treat them as inline rather than ordinary
attached files. If you want to reference an attachment from an in your
HTML source, the attachment also needs a Content-ID header.

Anymail comes with attach_inline_image() and
attach_inline_image_file() convenience functions that
do the right thing. See Inline images in the “Anymail additions” section.

(If you prefer to do the work yourself, Python’s MIMEImage [https://docs.python.org/3.6/library/email.mime.html#email.mime.image.MIMEImage]
and add_header() [https://docs.python.org/3.6/library/email.compat32-message.html#email.message.Message.add_header] should be helpful.)

Even if you mark an attachment as inline, some email clients may decide to also
display it as an attachment. This is largely outside your control.

Changed in version 4.3: For convenience, Anymail will treat an attachment with a Content-ID
but no Content-Disposition as inline. (Many—though not all—email
clients make the same assumption. But to ensure consistent behavior with non-Anymail
email backends, you should always set both Content-ID and
Content-Disposition: inline headers for inline images. Or just use
Anymail’s inline image helpers, which handle this for you.)

Additional headers

Anymail passes additional headers to your ESP. (Some ESPs may limit
which headers they’ll allow.) EmailMessage expects a dict [https://docs.python.org/3.6/library/stdtypes.html#dict] of headers:

Use `headers` when creating an EmailMessage
msg = EmailMessage(...
 headers={
 "List-Unsubscribe": unsubscribe_url,
 "X-Example-Header": "myapp",
 }
)

Or use the `extra_headers` attribute later
msg.extra_headers["In-Reply-To"] = inbound_msg["Message-ID"]

Anymail treats header names as case-insensitive (because that’s how email handles them).
If you supply multiple headers that differ only in case, only one of them will make it
into the resulting email.

Django’s default SMTP EmailBackend [https://docs.djangoproject.com/en/stable/topics/email/#django.core.mail.backends.smtp.EmailBackend]
has special handling for certain headers. Anymail replicates its behavior for compatibility:

	If you supply a “Reply-To” header, it will override the message’s
reply_to [https://docs.djangoproject.com/en/stable/topics/email/#django.core.mail.EmailMessage] attribute.

	If you supply a “From” header, it will override the message’s
from_email [https://docs.djangoproject.com/en/stable/topics/email/#django.core.mail.EmailMessage] and become the From field the
recipient sees. In addition, the original from_email [https://docs.djangoproject.com/en/stable/topics/email/#django.core.mail.EmailMessage] value
will be used as the message’s envelope_sender, which becomes
the Return-Path at the recipient end. (Only if your ESP supports altering envelope
sender, otherwise you’ll get an unsupported feature error.)

	If you supply a “To” header, you’ll usually get an unsupported feature error.
With Django’s SMTP EmailBackend, this can be used to show the recipient a To address
that’s different from the actual envelope recipients in the message’s
to [https://docs.djangoproject.com/en/stable/topics/email/#django.core.mail.EmailMessage] list. Spoofing the To header like this
is popular with spammers, and almost none of Anymail’s supported ESPs allow it.

Changed in version 2.0: Improved header-handling compatibility with Django’s SMTP EmailBackend.

Unsupported features

Some email capabilities aren’t supported by all ESPs. When you try to send a
message using features Anymail can’t communicate to the current ESP, you’ll get an
AnymailUnsupportedFeature error, and the message won’t be sent.

For example, very few ESPs support alternative message parts added with
attach_alternative()
(other than a single text/html part that becomes the HTML body).
If you try to send a message with other alternative parts, Anymail will
raise AnymailUnsupportedFeature.

If you’d like to silently ignore AnymailUnsupportedFeature
errors and send the messages anyway, set ANYMAIL_IGNORE_UNSUPPORTED_FEATURES
to True [https://docs.python.org/3.6/library/constants.html#True] in your settings.py:

ANYMAIL = {
 ...
 "IGNORE_UNSUPPORTED_FEATURES": True,
}

Refused recipients

If all recipients (to, cc, bcc) of a message are invalid or rejected by
your ESP at send time, the send call will raise an
AnymailRecipientsRefused error.

You can examine the message’s anymail_status
attribute to determine the cause of the error. (See ESP send status.)

If a single message is sent to multiple recipients, and any recipient is valid
(or the message is queued by your ESP because of rate limiting or
send_at), then this exception will not be raised.
You can still examine the message’s anymail_status
property after the send to determine the status of each recipient.

You can disable this exception by setting ANYMAIL_IGNORE_RECIPIENT_STATUS
to True [https://docs.python.org/3.6/library/constants.html#True] in your settings.py, which will cause Anymail to treat any non-API-error response
from your ESP as a successful send.

Note

Many ESPs don’t check recipient status during the send API call. For example,
Mailgun always queues sent messages, so you’ll never catch
AnymailRecipientsRefused with the Mailgun backend.

For those ESPs, use Anymail’s delivery event tracking
if you need to be notified of sends to blacklisted or invalid emails.

Anymail additions

Anymail normalizes several common ESP features, like adding
metadata or tags to a message. It also normalizes the response
from the ESP’s send API.

There are three ways you can use Anymail’s ESP features with
your Django email:

	Just use Anymail’s added attributes directly on any Django
EmailMessage [https://docs.djangoproject.com/en/stable/topics/email/#django.core.mail.EmailMessage] object (or any subclass).

	Create your email message using the AnymailMessage class,
which exposes extra attributes for the ESP features.

	Use the AnymailMessageMixin to add the Anymail extras
to some other EmailMessage-derived class (your own or from
another Django package).

The first approach is usually the simplest. The other two can be
helpful if you are working with Python development tools that
offer type checking or other static code analysis.

ESP send options (AnymailMessage)

	
class anymail.message.AnymailMessage

	A subclass of Django’s EmailMultiAlternatives
that exposes additional ESP functionality.

The constructor accepts any of the attributes below, or you can set
them directly on the message at any time before sending:

from anymail.message import AnymailMessage

message = AnymailMessage(
 subject="Welcome",
 body="Welcome to our site",
 to=["New User <user1@example.com>"],
 tags=["Onboarding"], # Anymail extra in constructor
)
Anymail extra attributes:
message.metadata = {"onboarding_experiment": "variation 1"}
message.track_clicks = True

message.send()
status = message.anymail_status # available after sending
status.message_id # e.g., '<12345.67890@example.com>'
status.recipients["user1@example.com"].status # e.g., 'queued'

Attributes you can add to messages

Note

Anymail looks for these attributes on any
EmailMessage [https://docs.djangoproject.com/en/stable/topics/email/#django.core.mail.EmailMessage] you send.
(You don’t have to use AnymailMessage.)

	
envelope_sender

	
New in version 2.0.

Set this to a str [https://docs.python.org/3.6/library/stdtypes.html#str] email address that should be used as the message’s
envelope sender. If supported by your ESP, this will become the Return-Path
in the recipient’s mailbox.

(Envelope sender is also known as bounce address, MAIL FROM, envelope from,
unixfrom, SMTP FROM command, return path, and several other terms [https://en.wikipedia.org/wiki/Bounce_address]. Confused?
Here’s some good info on how envelope sender relates to return path [https://www.postmastery.com/blog/about-the-return-path-header/].)

ESP support for envelope sender varies widely. Be sure to check Anymail’s
docs for your specific ESP before attempting to use it.
And note that those ESPs who do support it will often use only the domain
portion of the envelope sender address, overriding the part before the @ with
their own encoded bounce mailbox.

[The envelope_sender attribute is unique to Anymail. If you also use Django’s
SMTP EmailBackend, you can portably control envelope sender by instead setting
message.extra_headers["From"] to the desired email header From,
and message.from_email to the envelope sender. Anymail also allows this approach,
for compatibility with the SMTP EmailBackend. See the notes in Django’s bug tracker [https://code.djangoproject.com/ticket/9214].]

	
metadata

	Set this to a dict [https://docs.python.org/3.6/library/stdtypes.html#dict] of metadata values the ESP should store
with the message, for later search and retrieval.

message.metadata = {"customer": customer.id,
 "order": order.reference_number}

ESPs have differing restrictions on metadata content.
For portability, it’s best to stick to alphanumeric keys, and values
that are numbers or strings.

You should format any non-string data into a string before setting it
as metadata. See Formatting merge data.

	
merge_metadata

	Set this to a dict [https://docs.python.org/3.6/library/stdtypes.html#dict] of per-recipient metadata values the ESP should store
with the message, for later search and retrieval. Each key in the dict is a
recipient email (address portion only), and its value is a dict of metadata
for that recipient:

message.to = ["wile@example.com", "Mr. Runner <rr@example.com>"]
message.merge_metadata = {
 "wile@example.com": {"customer": 123, "order": "acme-zxyw"},
 "rr@example.com": {"customer": 45678, "order": "acme-wblt"},
}

When merge_metadata is set, Anymail will use the ESP’s
batch sending option, so that each to recipient gets an
individual message (and doesn’t see the other emails on the to list).

All of the notes on metadata keys and value formatting also apply
to merge_metadata. If there are conflicting keys, the
merge_metadata values will take precedence over metadata
for that recipient.

	
tags

	Set this to a list [https://docs.python.org/3.6/library/stdtypes.html#list] of str [https://docs.python.org/3.6/library/stdtypes.html#str] tags to apply to the message (usually
for segmenting ESP reporting).

message.tags = ["Order Confirmation", "Test Variant A"]

ESPs have differing restrictions on tags. For portability,
it’s best to stick with strings that start with an alphanumeric
character. (Also, Postmark only allows a single tag per message.)

Caution

Some ESPs put metadata (and a recipient’s merge_metadata)
and tags in email headers,
which are included with the email when it is delivered. Anything you
put in them could be exposed to the recipients, so don’t
include sensitive data.

	
track_opens

	Set this to True [https://docs.python.org/3.6/library/constants.html#True] or False [https://docs.python.org/3.6/library/constants.html#False] to override your ESP account default
setting for tracking when users open a message.

message.track_opens = True

	
track_clicks

	Set this to True [https://docs.python.org/3.6/library/constants.html#True] or False [https://docs.python.org/3.6/library/constants.html#False] to override your ESP account default
setting for tracking when users click on a link in a message.

message.track_clicks = False

	
send_at

	Set this to a datetime [https://docs.python.org/3.6/library/datetime.html#datetime.datetime], date [https://docs.python.org/3.6/library/datetime.html#datetime.date] to
have the ESP wait until the specified time to send the message.
(You can also use a float [https://docs.python.org/3.6/library/functions.html#float] or int [https://docs.python.org/3.6/library/functions.html#int], which will be treated
as a POSIX timestamp as in time.time() [https://docs.python.org/3.6/library/time.html#time.time].)

from datetime import datetime, timedelta
from django.utils.timezone import utc

message.send_at = datetime.now(utc) + timedelta(hours=1)

To avoid confusion, it’s best to provide either an aware
datetime [https://docs.python.org/3.6/library/datetime.html#datetime.datetime] (one that has its tzinfo set), or an
int [https://docs.python.org/3.6/library/functions.html#int] or float [https://docs.python.org/3.6/library/functions.html#float] seconds-since-the-epoch timestamp.

If you set send_at to a date [https://docs.python.org/3.6/library/datetime.html#datetime.date] or a naive
datetime [https://docs.python.org/3.6/library/datetime.html#datetime.datetime] (without a timezone), Anymail will interpret it in
Django’s current timezone [https://docs.djangoproject.com/en/stable/topics/i18n/timezones/#default-current-time-zone].
(Careful: datetime.now() [https://docs.python.org/3.6/library/datetime.html#datetime.datetime.now] returns a naive
datetime, unless you call it with a timezone like in the example above.)

The sent message will be held for delivery by your ESP – not locally by Anymail.

	
esp_extra

	Set this to a dict [https://docs.python.org/3.6/library/stdtypes.html#dict] of additional, ESP-specific settings for the message.

Using this attribute is inherently non-portable between ESPs, and is
intended as an “escape hatch” for accessing functionality that Anymail
doesn’t (or doesn’t yet) support.

See the notes for each specific ESP for information
on its esp_extra handling.

Status response from the ESP

	
anymail_status

	Normalized response from the ESP API’s send call. Anymail adds this
to each EmailMessage [https://docs.djangoproject.com/en/stable/topics/email/#django.core.mail.EmailMessage] as it is sent.

The value is an AnymailStatus.
See ESP send status for details.

Convenience methods

(These methods are only available on AnymailMessage or
AnymailMessageMixin objects. Unlike the attributes above,
they can’t be used on an arbitrary EmailMessage [https://docs.djangoproject.com/en/stable/topics/email/#django.core.mail.EmailMessage].)

	
attach_inline_image_file(path, subtype=None, idstring="img", domain=None)

	Attach an inline (embedded) image to the message and return its Content-ID.

This calls attach_inline_image_file() on the message. See Inline images
for details and an example.

	
attach_inline_image(content, filename=None, subtype=None, idstring="img", domain=None)

	Attach an inline (embedded) image to the message and return its Content-ID.

This calls attach_inline_image() on the message. See Inline images
for details and an example.

ESP send status

	
class anymail.message.AnymailStatus

	When you send a message through an Anymail backend, Anymail adds
an anymail_status attribute to the
EmailMessage [https://docs.djangoproject.com/en/stable/topics/email/#django.core.mail.EmailMessage], with a normalized version
of the ESP’s response.

Anymail backends create this attribute as they process each message.
Before that, anymail_status won’t be present on an ordinary Django
EmailMessage or EmailMultiAlternatives—you’ll get an AttributeError [https://docs.python.org/3.6/library/exceptions.html#AttributeError]
if you try to access it.

This might cause problems in your test cases, because Django
substitutes its own locmem EmailBackend [https://docs.djangoproject.com/en/stable/topics/testing/tools/#topics-testing-email]
during testing (so anymail_status never gets attached to the EmailMessage).
If you run into this, you can: change your code to guard against
a missing anymail_status attribute; switch from using EmailMessage to
AnymailMessage (or the AnymailMessageMixin) to ensure the
anymail_status attribute is always there; or substitute
Anymail’s test backend in any affected test cases.

After sending through an Anymail backend,
anymail_status will be an object with these attributes:

	
message_id

	The message id assigned by the ESP, or None [https://docs.python.org/3.6/library/constants.html#None] if the send call failed.

The exact format varies by ESP. Some use a UUID or similar;
some use an RFC 2822 [https://tools.ietf.org/html/rfc2822.html] Message-ID as the id:

message.anymail_status.message_id
'<20160306015544.116301.25145@example.org>'

Some ESPs assign a unique message ID for each recipient (to, cc, bcc)
of a single message. In that case, message_id will be a
set [https://docs.python.org/3.6/library/stdtypes.html#set] of all the message IDs across all recipients:

message.anymail_status.message_id
set(['16fd2706-8baf-433b-82eb-8c7fada847da',
'886313e1-3b8a-5372-9b90-0c9aee199e5d'])

	
status

	A set [https://docs.python.org/3.6/library/stdtypes.html#set] of send statuses, across all recipients (to, cc, bcc) of the
message, or None [https://docs.python.org/3.6/library/constants.html#None] if the send call failed.

message1.anymail_status.status
set(['queued']) # all recipients were queued
message2.anymail_status.status
set(['rejected', 'sent']) # at least one recipient was sent,
 # and at least one rejected

This is an easy way to check there weren't any problems:
if message3.anymail_status.status.issubset({'queued', 'sent'}):
 print("ok!")

Anymail normalizes ESP sent status to one of these values:

	'sent' the ESP has sent the message
(though it may or may not end up delivered)

	'queued' the ESP has accepted the message
and will try to send it asynchronously

	'invalid' the ESP considers the sender or recipient email invalid

	'rejected' the recipient is on an ESP blacklist
(unsubscribe, previous bounces, etc.)

	'failed' the attempt to send failed for some other reason

	'unknown' anything else

Not all ESPs check recipient emails during the send API call – some
simply queue the message, and report problems later. In that case,
you can use Anymail’s Tracking sent mail status features to be notified
of delivery status events.

	
recipients

	A dict [https://docs.python.org/3.6/library/stdtypes.html#dict] of per-recipient message ID and status values.

The dict is keyed by each recipient’s base email address
(ignoring any display name). Each value in the dict is
an object with status and message_id properties:

message = EmailMultiAlternatives(
 to=["you@example.com", "Me <me@example.com>"],
 subject="Re: The apocalypse")
message.send()

message.anymail_status.recipients["you@example.com"].status
'sent'
message.anymail_status.recipients["me@example.com"].status
'queued'
message.anymail_status.recipients["me@example.com"].message_id
'886313e1-3b8a-5372-9b90-0c9aee199e5d'

Will be an empty dict if the send call failed.

	
esp_response

	The raw response from the ESP API call. The exact type varies by
backend. Accessing this is inherently non-portable.

This will work with a requests-based backend:
message.anymail_status.esp_response.json()

Inline images

Anymail includes convenience functions to simplify attaching inline images to email.

These functions work with any Django EmailMessage [https://docs.djangoproject.com/en/stable/topics/email/#django.core.mail.EmailMessage] –
they’re not specific to Anymail email backends. You can use them with messages sent
through Django’s SMTP backend or any other that properly supports MIME attachments.

(Both functions are also available as convenience methods on Anymail’s
AnymailMessage and AnymailMessageMixin
classes.)

	
anymail.message.attach_inline_image_file(message, path, subtype=None, idstring="img", domain=None)

	Attach an inline (embedded) image to the message and return its Content-ID.

In your HTML message body, prefix the returned id with cid: to make an
 src attribute:

from django.core.mail import EmailMultiAlternatives
from anymail.message import attach_inline_image_file

message = EmailMultiAlternatives(...)
cid = attach_inline_image_file(message, 'path/to/picture.jpg')
html = '... ...' % cid
message.attach_alternative(html, 'text/html')

message.send()

message must be an EmailMessage [https://docs.djangoproject.com/en/stable/topics/email/#django.core.mail.EmailMessage] (or subclass) object.

path must be the pathname to an image file. (Its basename will also be used as the
attachment’s filename, which may be visible in some email clients.)

subtype is an optional MIME image subtype, e.g., "png" or "jpg".
By default, this is determined automatically from the content.

idstring and domain are optional, and are passed to Python’s
make_msgid() [https://docs.python.org/3.6/library/email.utils.html#email.utils.make_msgid] to generate the Content-ID.
Generally the defaults should be fine.

Changed in version 4.0: If you don’t supply a domain, Anymail will use the simple string “inline”
rather than make_msgid() [https://docs.python.org/3.6/library/email.utils.html#email.utils.make_msgid]’s default local hostname. This
avoids a problem with ESPs that confuse Content-ID and attachment
filename: if your local server’s hostname ends in “.com”, Gmail could block
messages with inline attachments generated by earlier Anymail versions and sent
through these ESPs.

	
anymail.message.attach_inline_image(message, content, filename=None, subtype=None, idstring="img", domain=None)

	This is a version of attach_inline_image_file() that accepts raw
image data, rather than reading it from a file.

message must be an EmailMessage [https://docs.djangoproject.com/en/stable/topics/email/#django.core.mail.EmailMessage] (or subclass) object.

content must be the binary image data

filename is an optional str [https://docs.python.org/3.6/library/stdtypes.html#str] that will be used as as the attachment’s
filename – e.g., "picture.jpg". This may be visible in email clients that
choose to display the image as an attachment as well as making it available
for inline use (this is up to the email client). It should be a base filename,
without any path info.

subtype, idstring and domain are as described in attach_inline_image_file()

Global send defaults

In your settings.py, you can set ANYMAIL_SEND_DEFAULTS
to a dict [https://docs.python.org/3.6/library/stdtypes.html#dict] of default options that will apply to all messages sent through Anymail:

ANYMAIL = {
 ...
 "SEND_DEFAULTS": {
 "metadata": {"district": "North", "source": "unknown"},
 "tags": ["myapp", "version3"],
 "track_clicks": True,
 "track_opens": True,
 },
}

At send time, the attributes on each EmailMessage [https://docs.djangoproject.com/en/stable/topics/email/#django.core.mail.EmailMessage]
get merged with the global send defaults. For example, with the
settings above:

message = AnymailMessage(...)
message.tags = ["welcome"]
message.metadata = {"source": "Ads", "user_id": 12345}
message.track_clicks = False

message.send()
will send with:
tags: ["myapp", "version3", "welcome"] (merged with defaults)
metadata: {"district": "North", "source": "Ads", "user_id": 12345} (merged)
track_clicks: False (message overrides defaults)
track_opens: True (from the defaults)

To prevent a message from using a particular global default, set that attribute
to None [https://docs.python.org/3.6/library/constants.html#None]. (E.g., message.tags = None will send the message with no tags,
ignoring the global default.)

Anymail’s send defaults actually work for all django.core.mail.EmailMessage
attributes. So you could set "bcc": ["always-copy@example.com"] to add a bcc
to every message. (You could even attach a file to every message – though
your recipients would probably find that annoying!)

You can also set ESP-specific global defaults. If there are conflicts,
the ESP-specific value will override the main SEND_DEFAULTS:

ANYMAIL = {
 ...
 "SEND_DEFAULTS": {
 "tags": ["myapp", "version3"],
 },
 "POSTMARK_SEND_DEFAULTS": {
 # Postmark only supports a single tag
 "tags": ["version3"], # overrides SEND_DEFAULTS['tags'] (not merged!)
 },
 "MAILGUN_SEND_DEFAULTS": {
 "esp_extra": {"o:dkim": "no"}, # Disable Mailgun DKIM signatures
 },
}

AnymailMessageMixin

	
class anymail.message.AnymailMessageMixin

	Mixin class that adds Anymail’s ESP extra attributes and convenience methods
to other EmailMessage [https://docs.djangoproject.com/en/stable/topics/email/#django.core.mail.EmailMessage] subclasses.

For example, with the django-mail-templated [https://pypi.org/project/django-mail-templated/] package’s custom EmailMessage:

from anymail.message import AnymailMessageMixin
from mail_templated import EmailMessage

class TemplatedAnymailMessage(AnymailMessageMixin, EmailMessage):
 """
 An EmailMessage that supports both Mail-Templated
 and Anymail features
 """
 pass

msg = TemplatedAnymailMessage(
 template_name="order_confirmation.tpl", # Mail-Templated arg
 track_opens=True, # Anymail arg
 ...
)
msg.context = {"order_num": "12345"} # Mail-Templated attribute
msg.tags = ["templated"] # Anymail attribute

Batch sending/merge and ESP templates

If your ESP offers templates and batch-sending/merge capabilities,
Anymail can simplify using them in a portable way. Anymail doesn’t
translate template syntax between ESPs, but it does normalize using
templates and providing merge data for batch sends.

Here’s an example using both an ESP stored template and merge data:

from django.core.mail import EmailMessage

message = EmailMessage(
 subject=None, # use the subject in our stored template
 from_email="marketing@example.com",
 to=["Wile E. <wile@example.com>", "rr@example.com"])
message.template_id = "after_sale_followup_offer" # use this ESP stored template
message.merge_data = { # per-recipient data to merge into the template
 'wile@example.com': {'NAME': "Wile E.",
 'OFFER': "15% off anvils"},
 'rr@example.com': {'NAME': "Mr. Runner"},
}
message.merge_global_data = { # merge data for all recipients
 'PARTNER': "Acme, Inc.",
 'OFFER': "5% off any Acme product", # a default if OFFER missing for recipient
}
message.send()

The message’s template_id identifies a template stored
at your ESP which provides the message body and subject. (Assuming the
ESP supports those features.)

The message’s merge_data supplies the per-recipient
data to substitute for merge fields in your template. Setting this attribute
also lets Anymail know it should use the ESP’s batch sending
feature to deliver separate, individually-customized messages
to each address on the “to” list. (Again, assuming your ESP
supports that.)

Note

Templates and batch sending capabilities can vary widely
between ESPs, as can the syntax for merge fields. Be sure
to read the notes for your specific ESP,
and test carefully with a small recipient list before
launching a gigantic batch send.

Although related and often used together, ESP stored templates
and merge data are actually independent features.
For example, some ESPs will let you use merge field syntax
directly in your EmailMessage [https://docs.djangoproject.com/en/stable/topics/email/#django.core.mail.EmailMessage]
body, so you can do customized batch sending without needing
to define a stored template at the ESP.

ESP stored templates

Many ESPs support transactional email templates that are stored and
managed within your ESP account. To use an ESP stored template
with Anymail, set template_id
on an EmailMessage [https://docs.djangoproject.com/en/stable/topics/email/#django.core.mail.EmailMessage].

	
AnymailMessage.template_id

	The identifier of the ESP stored template you want to use.
For most ESPs, this is a str [https://docs.python.org/3.6/library/stdtypes.html#str] name or unique id.
(See the notes for your specific ESP.)

message.template_id = "after_sale_followup_offer"

With most ESPs, using a stored template will ignore any
body (plain-text or HTML) from the EmailMessage [https://docs.djangoproject.com/en/stable/topics/email/#django.core.mail.EmailMessage]
object.

A few ESPs also allow you to define the message’s subject as part of the template,
but any subject you set on the EmailMessage [https://docs.djangoproject.com/en/stable/topics/email/#django.core.mail.EmailMessage]
will override the template subject. To use the subject stored with the ESP template,
set the message’s subject to None [https://docs.python.org/3.6/library/constants.html#None]:

message.subject = None # use subject from template (if supported)

Similarly, some ESPs can also specify the “from” address in the template
definition. Set message.from_email = None to use the template’s “from.”
(You must set this attribute after constructing an
EmailMessage [https://docs.djangoproject.com/en/stable/topics/email/#django.core.mail.EmailMessage] object; passing
from_email=None to the constructor will use Django’s
DEFAULT_FROM_EMAIL [https://docs.djangoproject.com/en/stable/ref/settings/#std:setting-DEFAULT_FROM_EMAIL] setting, overriding your template value.)

Batch sending with merge data

Several ESPs support “batch transactional sending,” where a single API call can send messages
to multiple recipients. The message is customized for each email on the “to” list
by merging per-recipient data into the body and other message fields.

To use batch sending with Anymail (for ESPs that support it):

	Use “merge fields” (sometimes called “substitution variables” or similar)
in your message. This could be in an ESP stored template
referenced by template_id,
or with some ESPs you can use merge fields directly in your
EmailMessage [https://docs.djangoproject.com/en/stable/topics/email/#django.core.mail.EmailMessage] (meaning the message itself
is treated as an on-the-fly template).

	Set the message’s merge_data attribute to define merge field
substitutions for each recipient, and optionally set merge_global_data
to defaults or values to use for all recipients.

	Specify all of the recipients for the batch in the message’s to list.

Caution

It’s critical to set the merge_data
(or merge_metadata) attribute:
this is how Anymail recognizes the message as a batch send.

When you provide merge_data, Anymail will tell the ESP to send an individual customized
message to each “to” address. Without it, you may get a single message to everyone,
exposing all of the email addresses to all recipients.
(If you don’t have any per-recipient customizations, but still want individual messages,
just set merge_data to an empty dict.)

The exact syntax for merge fields varies by ESP. It might be something like
|NAME| or -name- or <%name%>. (Check the notes for
your ESP, and remember you’ll need to change
the template if you later switch ESPs.)

	
AnymailMessage.merge_data

	A dict [https://docs.python.org/3.6/library/stdtypes.html#dict] of per-recipient template substitution/merge data. Each key in the
dict is a recipient email address, and its value is a dict [https://docs.python.org/3.6/library/stdtypes.html#dict] of merge field
names and values to use for that recipient:

message.merge_data = {
 'wile@example.com': {'NAME': "Wile E.",
 'OFFER': "15% off anvils"},
 'rr@example.com': {'NAME': "Mr. Runner",
 'OFFER': "instant tunnel paint"},
}

When merge_data is set, Anymail will use the ESP’s batch sending option,
so that each to recipient gets an individual message (and doesn’t see the
other emails on the to list).

	
AnymailMessage.merge_global_data

	A dict [https://docs.python.org/3.6/library/stdtypes.html#dict] of template substitution/merge data to use for all recipients.
Keys are merge field names in your message template:

message.merge_global_data = {
 'PARTNER': "Acme, Inc.",
 'OFFER': "5% off any Acme product", # a default OFFER
}

Merge data values must be strings. (Some ESPs also allow other
JSON-serializable types like lists or dicts.)
See Formatting merge data for more information.

Like all Anymail additions, you can use these extended template and
merge attributes with any EmailMessage [https://docs.djangoproject.com/en/stable/topics/email/#django.core.mail.EmailMessage] or subclass object.
(It doesn’t have to be an AnymailMessage.)

Tip: you can add merge_global_data to your
global Anymail send defaults to supply merge data
available to all batch sends (e.g, site name, contact info). The global
defaults will be merged with any per-message merge_global_data.

Formatting merge data

If you’re using a date, datetime [https://docs.python.org/3.6/library/datetime.html#module-datetime], Decimal, or anything other
than strings and integers, you’ll need to format them into strings
for use as merge data:

product = Product.objects.get(123) # A Django model
total_cost = Decimal('19.99')
ship_date = date(2015, 11, 18)

Won't work -- you'll get "not JSON serializable" errors at send time:
message.merge_global_data = {
 'PRODUCT': product,
 'TOTAL_COST': total_cost,
 'SHIP_DATE': ship_date
}

Do something this instead:
message.merge_global_data = {
 'PRODUCT': product.name, # assuming name is a CharField
 'TOTAL_COST': "%.2f" % total_cost,
 'SHIP_DATE': ship_date.strftime('%B %d, %Y') # US-style "March 15, 2015"
}

These are just examples. You’ll need to determine the best way to format
your merge data as strings.

Although floats are usually allowed in merge data, you’ll generally want to format them
into strings yourself to avoid surprises with floating-point precision.

Anymail will raise AnymailSerializationError if you attempt
to send a message with merge data (or metadata) that can’t be sent to your ESP.

ESP templates vs. Django templates

ESP templating languages are generally proprietary,
which makes them inherently non-portable.

Anymail only exposes the stored template capabilities that your ESP
already offers, and then simplifies providing merge data in a portable way.
It won’t translate between different ESP template syntaxes, and it
can’t do a batch send if your ESP doesn’t support it.

There are two common cases where ESP template
and merge features are particularly useful with Anymail:

	When the people who develop and maintain your transactional
email templates are different from the people who maintain
your Django page templates. (For example, you use a single
ESP for both marketing and transactional email, and your
marketing team manages all the ESP email templates.)

	When you want to use your ESP’s batch-sending capabilities
for performance reasons, where a single API call can
trigger individualized messages to hundreds or thousands of recipients.
(For example, sending a daily batch of shipping notifications.)

If neither of these cases apply, you may find that
using Django templates can be a more
portable and maintainable approach for building transactional email.

Tracking sent mail status

Anymail provides normalized handling for your ESP’s event-tracking webhooks.
You can use this to be notified when sent messages have been delivered,
bounced, been opened or had links clicked, among other things.

Webhook support is optional. If you haven’t yet, you’ll need to
configure webhooks in your Django
project. (You may also want to review Securing webhooks.)

Once you’ve enabled webhooks, Anymail will send a anymail.signals.tracking
custom Django signal [https://docs.djangoproject.com/en/stable/topics/signals/#module-django.dispatch] for each ESP tracking event it receives.
You can connect your own receiver function to this signal for further processing.

Be sure to read Django’s listening to signals [https://docs.djangoproject.com/en/stable/topics/signals/#listening-to-signals] docs for information on defining
and connecting signal receivers.

Example:

from anymail.signals import tracking
from django.dispatch import receiver

@receiver(tracking) # add weak=False if inside some other function/class
def handle_bounce(sender, event, esp_name, **kwargs):
 if event.event_type == 'bounced':
 print("Message %s to %s bounced" % (
 event.message_id, event.recipient))

@receiver(tracking)
def handle_click(sender, event, esp_name, **kwargs):
 if event.event_type == 'clicked':
 print("Recipient %s clicked url %s" % (
 event.recipient, event.click_url))

You can define individual signal receivers, or create one big one for all
event types, which ever you prefer. You can even handle the same event
in multiple receivers, if that makes your code cleaner. These
signal receiver functions are documented
in more detail below.

Note that your tracking signal recevier(s) will be called for all tracking
webhook types you’ve enabled at your ESP, so you should always check the
event_type as shown in the examples above
to ensure you’re processing the expected events.

Some ESPs batch up multiple events into a single webhook call. Anymail will
invoke your signal receiver once, separately, for each event in the batch.

Normalized tracking event

	
class anymail.signals.AnymailTrackingEvent

	The event parameter to Anymail’s tracking
signal receiver
is an object with the following attributes:

	
event_type

	A normalized str [https://docs.python.org/3.6/library/stdtypes.html#str] identifying the type of tracking event.

Note

Most ESPs will send some, but not all of these event types.
Check the specific ESP docs for more
details. In particular, very few ESPs implement the “sent” and
“delivered” events.

One of:

	'queued': the ESP has accepted the message
and will try to send it (possibly at a later time).

	'sent': the ESP has sent the message
(though it may or may not get successfully delivered).

	'rejected': the ESP refused to send the messsage
(e.g., because of a suppression list, ESP policy, or invalid email).
Additional info may be in reject_reason.

	'failed': the ESP was unable to send the message
(e.g., because of an error rendering an ESP template)

	'bounced': the message was rejected or blocked by receiving MTA
(message transfer agent—the receiving mail server).

	'deferred': the message was delayed by in transit
(e.g., because of a transient DNS problem, a full mailbox, or
certain spam-detection strategies).
The ESP will keep trying to deliver the message, and should generate
a separate 'bounced' event if later it gives up.

	'delivered': the message was accepted by the receiving MTA.
(This does not guarantee the user will see it. For example, it might
still be classified as spam.)

	'autoresponded': a robot sent an automatic reply, such as a vacation
notice, or a request to prove you’re a human.

	'opened': the user opened the message (used with your ESP’s
track_opens feature).

	'clicked': the user clicked a link in the message (used with your ESP’s
track_clicks feature).

	'complained': the recipient reported the message as spam.

	'unsubscribed': the recipient attempted to unsubscribe
(when you are using your ESP’s subscription management features).

	'subscribed': the recipient attempted to subscribe to a list,
or undo an earlier unsubscribe (when you are using your ESP’s
subscription management features).

	'unknown': anything else. Anymail isn’t able to normalize this event,
and you’ll need to examine the raw esp_event data.

	
message_id

	A str [https://docs.python.org/3.6/library/stdtypes.html#str] unique identifier for the message, matching the
message.anymail_status.message_id
attribute from when the message was sent.

The exact format of the string varies by ESP. (It may or may not be
an actual “Message-ID”, and is often some sort of UUID.)

	
timestamp

	A datetime [https://docs.python.org/3.6/library/datetime.html#datetime.datetime] indicating when the event was generated.
(The timezone is often UTC, but the exact behavior depends on your ESP and
account settings. Anymail ensures that this value is an aware datetime
with an accurate timezone.)

	
event_id

	A str [https://docs.python.org/3.6/library/stdtypes.html#str] unique identifier for the event, if available; otherwise None [https://docs.python.org/3.6/library/constants.html#None].
Can be used to avoid processing the same event twice. Exact format varies
by ESP, and not all ESPs provide an event_id for all event types.

	
recipient

	The str [https://docs.python.org/3.6/library/stdtypes.html#str] email address of the recipient. (Just the “recipient@example.com”
portion.)

	
metadata

	A dict [https://docs.python.org/3.6/library/stdtypes.html#dict] of unique data attached to the message. Will be empty if the ESP
doesn’t provide metadata with its tracking events.
(See AnymailMessage.metadata.)

	
tags

	A list [https://docs.python.org/3.6/library/stdtypes.html#list] of str [https://docs.python.org/3.6/library/stdtypes.html#str] tags attached to the message. Will be empty if the ESP
doesn’t provide tags with its tracking events.
(See AnymailMessage.tags.)

	
reject_reason

	For 'bounced' and 'rejected' events, a normalized str [https://docs.python.org/3.6/library/stdtypes.html#str] giving the reason
for the bounce/rejection. Otherwise None [https://docs.python.org/3.6/library/constants.html#None]. One of:

	'invalid': bad email address format.

	'bounced': bounced recipient. (In a 'rejected' event, indicates the
recipient is on your ESP’s prior-bounces suppression list.)

	'timed_out': your ESP is giving up after repeated transient
delivery failures (which may have shown up as 'deferred' events).

	'blocked': your ESP’s policy prohibits this recipient.

	'spam': the receiving MTA or recipient determined the message is spam.
(In a 'rejected' event, indicates the recipient is on your ESP’s
prior-spam-complaints suppression list.)

	'unsubscribed': the recipient is in your ESP’s unsubscribed
suppression list.

	'other': some other reject reason; examine the raw esp_event.

	None [https://docs.python.org/3.6/library/constants.html#None]: Anymail isn’t able to normalize a reject/bounce reason for
this ESP.

Note

Not all ESPs provide all reject reasons, and this area is often
under-documented by the ESP. Anymail does its best to interpret
the ESP event, but you may find (e.g.,) that it will report
'timed_out' for one ESP, and 'bounced' for another, sending
to the same non-existent mailbox.

We appreciate bug reports with the raw
esp_event data in cases where Anymail is getting it wrong.

	
description

	If available, a str [https://docs.python.org/3.6/library/stdtypes.html#str] with a (usually) human-readable description of the event.
Otherwise None [https://docs.python.org/3.6/library/constants.html#None]. For example, might explain why an email has bounced. Exact
format varies by ESP (and sometimes event type).

	
mta_response

	If available, a str [https://docs.python.org/3.6/library/stdtypes.html#str] with a raw (intended for email administrators) response
from the receiving MTA. Otherwise None [https://docs.python.org/3.6/library/constants.html#None]. Often includes SMTP response codes,
but the exact format varies by ESP (and sometimes receiving MTA).

	
user_agent

	For 'opened' and 'clicked' events, a str [https://docs.python.org/3.6/library/stdtypes.html#str] identifying the browser and/or
email client the user is using, if available. Otherwise None [https://docs.python.org/3.6/library/constants.html#None].

	
click_url

	For 'clicked' events, the str [https://docs.python.org/3.6/library/stdtypes.html#str] url the user clicked. Otherwise None [https://docs.python.org/3.6/library/constants.html#None].

	
esp_event

	The “raw” event data from the ESP, deserialized into a python data structure.
For most ESPs this is either parsed JSON (as a dict [https://docs.python.org/3.6/library/stdtypes.html#dict]), or HTTP POST fields
(as a Django QueryDict [https://docs.djangoproject.com/en/stable/ref/request-response/#django.http.QueryDict]).

This gives you (non-portable) access to additional information provided by
your ESP. For example, some ESPs include geo-IP location information with
open and click events.

Signal receiver functions

Your Anymail signal receiver must be a function with this signature:

	
def my_handler(sender, event, esp_name, **kwargs):

	(You can name it anything you want.)

	Parameters

	
	sender (class) – The source of the event. (One of the
anymail.webhook.* View classes, but you
generally won’t examine this parameter; it’s
required by Django’s signal mechanism.)

	event (AnymailTrackingEvent) – The normalized tracking event.
Almost anything you’d be interested in
will be in here.

	esp_name (str [https://docs.python.org/3.6/library/stdtypes.html#str]) – e.g., “SendMail” or “Postmark”. If you are working
with multiple ESPs, you can use this to distinguish
ESP-specific handling in your shared event processing.

	**kwargs – Required by Django’s signal mechanism
(to support future extensions).

	Returns

	nothing

	Raises

	any exceptions in your signal receiver will result
in a 400 HTTP error to the webhook. See discussion
below.

If (any of) your signal receivers raise an exception, Anymail
will discontinue processing the current batch of events and return
an HTTP 400 error to the ESP. Most ESPs respond to this by re-sending
the event(s) later, a limited number of times.

This is the desired behavior for transient problems (e.g., your
Django database being unavailable), but can cause confusion in other
error cases. You may want to catch some (or all) exceptions
in your signal receiver, log the problem for later follow up,
and allow Anymail to return the normal 200 success response
to your ESP.

Some ESPs impose strict time limits on webhooks, and will consider
them failed if they don’t respond within (say) five seconds.
And will retry sending the “failed” events, which could cause duplicate
processing in your code.
If your signal receiver code might be slow, you should instead
queue the event for later, asynchronous processing (e.g., using
something like Celery [http://www.celeryproject.org/]).

If your signal receiver function is defined within some other
function or instance method, you must use the weak=False
option when connecting it. Otherwise, it might seem to work at first,
but will unpredictably stop being called at some point—typically
on your production server, in a hard-to-debug way. See Django’s
listening to signals [https://docs.djangoproject.com/en/stable/topics/signals/#listening-to-signals] docs for more information.

Pre- and post-send signals

Anymail provides pre-send and post-send
signals you can connect to trigger actions whenever messages are sent through an Anymail backend.

Be sure to read Django’s listening to signals [https://docs.djangoproject.com/en/stable/topics/signals/#listening-to-signals] docs for information on defining
and connecting signal receivers.

Pre-send signal

You can use Anymail’s pre_send signal to examine
or modify messages before they are sent.
For example, you could implement your own email suppression list:

from anymail.exceptions import AnymailCancelSend
from anymail.signals import pre_send
from django.dispatch import receiver
from email.utils import parseaddr

from your_app.models import EmailBlockList

@receiver(pre_send)
def filter_blocked_recipients(sender, message, **kwargs):
 # Cancel the entire send if the from_email is blocked:
 if not ok_to_send(message.from_email):
 raise AnymailCancelSend("Blocked from_email")
 # Otherwise filter the recipients before sending:
 message.to = [addr for addr in message.to if ok_to_send(addr)]
 message.cc = [addr for addr in message.cc if ok_to_send(addr)]

def ok_to_send(addr):
 # This assumes you've implemented an EmailBlockList model
 # that holds emails you want to reject...
 name, email = parseaddr(addr) # just want the <email> part
 try:
 EmailBlockList.objects.get(email=email)
 return False # in the blocklist, so *not* OK to send
 except EmailBlockList.DoesNotExist:
 return True # *not* in the blocklist, so OK to send

Any changes you make to the message in your pre-send signal receiver
will be reflected in the ESP send API call, as shown for the filtered
“to” and “cc” lists above. Note that this will modify the original
EmailMessage (not a copy)—be sure this won’t confuse your sending
code that created the message.

If you want to cancel the message altogether, your pre-send receiver
function can raise an AnymailCancelSend exception,
as shown for the “from_email” above. This will silently cancel the send
without raising any other errors.

	
anymail.signals.pre_send

	Signal delivered before each EmailMessage is sent.

Your pre_send receiver must be a function with this signature:

	
def my_pre_send_handler(sender, message, esp_name, **kwargs):

	(You can name it anything you want.)

	Parameters

	
	sender (class) – The Anymail backend class processing the message.
This parameter is required by Django’s signal mechanism,
and despite the name has nothing to do with the email message’s sender.
(You generally won’t need to examine this parameter.)

	message (EmailMessage [https://docs.djangoproject.com/en/stable/topics/email/#django.core.mail.EmailMessage]) – The message being sent. If your receiver modifies the message, those
changes will be reflected in the ESP send call.

	esp_name (str [https://docs.python.org/3.6/library/stdtypes.html#str]) – The name of the ESP backend in use (e.g., “SendGrid” or “Mailgun”).

	**kwargs – Required by Django’s signal mechanism (to support future extensions).

	Raises

	anymail.exceptions.AnymailCancelSend if your receiver wants
to cancel this message without causing errors or interrupting a batch send.

Post-send signal

You can use Anymail’s post_send signal to examine
messages after they are sent. This is useful to centralize handling of
the sent status for all messages.

For example, you could implement your own ESP logging dashboard
(perhaps combined with Anymail’s event-tracking webhooks):

from anymail.signals import post_send
from django.dispatch import receiver

from your_app.models import SentMessage

@receiver(post_send)
def log_sent_message(sender, message, status, esp_name, **kwargs):
 # This assumes you've implemented a SentMessage model for tracking sends.
 # status.recipients is a dict of email: status for each recipient
 for email, recipient_status in status.recipients.items():
 SentMessage.objects.create(
 esp=esp_name,
 message_id=recipient_status.message_id, # might be None if send failed
 email=email,
 subject=message.subject,
 status=recipient_status.status, # 'sent' or 'rejected' or ...
)

	
anymail.signals.post_send

	Signal delivered after each EmailMessage is sent.

If you register multiple post-send receivers, Anymail will ensure that
all of them are called, even if one raises an error.

Your post_send receiver must be a function with this signature:

	
def my_post_send_handler(sender, message, status, esp_name, **kwargs):

	(You can name it anything you want.)

	Parameters

	
	sender (class) – The Anymail backend class processing the message.
This parameter is required by Django’s signal mechanism,
and despite the name has nothing to do with the email message’s sender.
(You generally won’t need to examine this parameter.)

	message (EmailMessage [https://docs.djangoproject.com/en/stable/topics/email/#django.core.mail.EmailMessage]) – The message that was sent. You should not modify this in a post-send receiver.

	status (AnymailStatus) – The normalized response from the ESP send call. (Also available as
message.anymail_status.)

	esp_name (str [https://docs.python.org/3.6/library/stdtypes.html#str]) – The name of the ESP backend in use (e.g., “SendGrid” or “Mailgun”).

	**kwargs – Required by Django’s signal mechanism (to support future extensions).

Exceptions

	
exception anymail.exceptions.AnymailUnsupportedFeature

	If the email tries to use features that aren’t supported by the ESP, the send
call will raise an AnymailUnsupportedFeature error, and the message
won’t be sent. See Unsupported features.

You can disable this exception (ignoring the unsupported features and
sending the message anyway, without them) by setting
ANYMAIL_IGNORE_UNSUPPORTED_FEATURES to True [https://docs.python.org/3.6/library/constants.html#True].

	
exception anymail.exceptions.AnymailRecipientsRefused

	Raised when all recipients (to, cc, bcc) of a message are invalid or rejected by
your ESP at send time. See Refused recipients.

You can disable this exception by setting ANYMAIL_IGNORE_RECIPIENT_STATUS
to True [https://docs.python.org/3.6/library/constants.html#True] in your settings.py, which will cause Anymail to treat any
non-AnymailAPIError response from your ESP as a successful send.

	
exception anymail.exceptions.AnymailAPIError

	If the ESP’s API fails or returns an error response, the send call will
raise an AnymailAPIError.

The exception’s status_code and response attributes may
help explain what went wrong. (Tip: you may also be able to check the API log in
your ESP’s dashboard. See Troubleshooting.)

In production, it’s not unusual for sends to occasionally fail due to transient
connectivity problems, ESP maintenance, or other operational issues. Typically
these failures have a 5xx status_code. See Handling transient errors
for suggestions on retrying these failed sends.

	
exception anymail.exceptions.AnymailInvalidAddress

	
New in version 0.7.

The send call will raise a AnymailInvalidAddress error if you
attempt to send a message with invalidly-formatted email addresses in
the from_email or recipient lists.

One source of this error can be using a display-name (“real name”) containing
commas or parentheses. Per RFC 5322 [https://tools.ietf.org/html/rfc5322.html], you should use double quotes around
the display-name portion of an email address:

won't work:
send_mail(from_email='Widgets, Inc. <widgets@example.com>', ...)
must use double quotes around display-name containing comma:
send_mail(from_email='"Widgets, Inc." <widgets@example.com>', ...)

	
exception anymail.exceptions.AnymailSerializationError

	The send call will raise a AnymailSerializationError
if there are message attributes Anymail doesn’t know how to represent
to your ESP.

The most common cause of this error is including values other than
strings and numbers in your merge_data or metadata.
(E.g., you need to format Decimal and date data to
strings before setting them into merge_data.)

See Formatting merge data for more information.

Receiving mail

New in version 1.3.

For ESPs that support receiving inbound email, Anymail offers normalized handling
of inbound events.

If you didn’t set up webhooks when first installing Anymail, you’ll need to
configure webhooks to get started with inbound email.
(You should also review Securing webhooks.)

Once you’ve enabled webhooks, Anymail will send a anymail.signals.inbound
custom Django signal [https://docs.djangoproject.com/en/stable/topics/signals/#module-django.dispatch] for each ESP inbound message it receives.
You can connect your own receiver function to this signal for further processing.
(This is very much like how Anymail handles status tracking
events for sent messages. Inbound events just use a different signal receiver
and have different event parameters.)

Be sure to read Django’s listening to signals [https://docs.djangoproject.com/en/stable/topics/signals/] docs
for information on defining and connecting signal receivers.

Example:

from anymail.signals import inbound
from django.dispatch import receiver

@receiver(inbound) # add weak=False if inside some other function/class
def handle_inbound(sender, event, esp_name, **kwargs):
 message = event.message
 print("Received message from %s (envelope sender %s) with subject '%s'" % (
 message.from_email, message.envelope_sender, message.subject))

Some ESPs batch up multiple inbound messages into a single webhook call. Anymail will
invoke your signal receiver once, separately, for each message in the batch.

Warning

Be careful with inbound email

Inbound email is user-supplied content. There are all kinds of ways a
malicious sender can abuse the email format to give your app misleading
or dangerous data. Treat inbound email content with the same suspicion
you’d apply to any user-submitted data. Among other concerns:

	Senders can spoof the From header. An inbound message’s
from_email may
or may not match the actual address that sent the message. (There are both
legitimate and malicious uses for this capability.)

	Most other fields in email can be falsified. E.g., an inbound message’s
date may or may not accurately
reflect when the message was sent.

	Inbound attachments have the same security concerns as user-uploaded files.
If you process inbound attachments, you’ll need to verify that the
attachment content is valid.

This is particularly important if you publish the attachment content
through your app. For example, an “image” attachment could actually contain an
executable file or raw HTML. You wouldn’t want to serve that as a user’s avatar.

It’s not sufficient to check the attachment’s content-type or
filename extension—senders can falsify both of those.
Consider using python-magic [http://blog.hayleyanderson.us/2015/07/18/validating-file-types-in-django/] or a similar approach
to validate the actual attachment content.

The Django docs have additional notes on
user-supplied content security [https://docs.djangoproject.com/en/stable/topics/security/#user-uploaded-content-security].

Normalized inbound event

	
class anymail.signals.AnymailInboundEvent

	The event parameter to Anymail’s inbound
signal receiver is an object
with the following attributes:

	
message

	An AnymailInboundMessage representing the email
that was received. Most of what you’re interested in will be on this message
attribute. See the full details below.

	
event_type

	A normalized str [https://docs.python.org/3.6/library/stdtypes.html#str] identifying the type of event. For inbound events,
this is always 'inbound'.

	
timestamp

	A datetime [https://docs.python.org/3.6/library/datetime.html#datetime.datetime] indicating when the inbound event was generated
by the ESP, if available; otherwise None [https://docs.python.org/3.6/library/constants.html#None]. (Very few ESPs provide this info.)

This is typically when the ESP received the message or shortly
thereafter. (Use event.message.date
if you’re interested in when the message was sent.)

(The timestamp’s timezone is often UTC, but the exact behavior depends
on your ESP and account settings. Anymail ensures that this value is
an aware datetime with an accurate timezone.)

	
event_id

	A str [https://docs.python.org/3.6/library/stdtypes.html#str] unique identifier for the event, if available; otherwise None [https://docs.python.org/3.6/library/constants.html#None].
Can be used to avoid processing the same event twice. The exact format varies
by ESP, and very few ESPs provide an event_id for inbound messages.

An alternative approach to avoiding duplicate processing is to use the
inbound message’s Message-ID header (event.message['Message-ID']).

	
esp_event

	The “raw” event data from the ESP, deserialized into a python data structure.
For most ESPs this is either parsed JSON (as a dict [https://docs.python.org/3.6/library/stdtypes.html#dict]), or sometimes the
complete Django HttpRequest [https://docs.djangoproject.com/en/stable/ref/request-response/#django.http.HttpRequest] received by the webhook.

This gives you (non-portable) access to original event provided by your ESP,
which can be helpful if you need to access data Anymail doesn’t normalize.

Normalized inbound message

	
class anymail.inbound.AnymailInboundMessage

	The message attribute of an AnymailInboundEvent
is an AnymailInboundMessage—an extension of Python’s standard email.message.Message [https://docs.python.org/3.6/library/email.compat32-message.html#email.message.Message]
with additional features to simplify inbound handling.

In addition to the base Message [https://docs.python.org/3.6/library/email.compat32-message.html#email.message.Message] functionality, it includes these attributes:

	
envelope_sender

	The actual sending address of the inbound message, as determined by your ESP.
This is a str [https://docs.python.org/3.6/library/stdtypes.html#str] “addr-spec”—just the email address portion without any display
name ("sender@example.com")—or None [https://docs.python.org/3.6/library/constants.html#None] if the ESP didn’t provide a value.

The envelope sender often won’t match the message’s From header—for example,
messages sent on someone’s behalf (mailing lists, invitations) or when a spammer
deliberately falsifies the From address.

	
envelope_recipient

	The actual destination address the inbound message was delivered to.
This is a str [https://docs.python.org/3.6/library/stdtypes.html#str] “addr-spec”—just the email address portion without any display
name ("recipient@example.com")—or None [https://docs.python.org/3.6/library/constants.html#None] if the ESP didn’t provide a value.

The envelope recipient may not appear in the To or Cc recipient lists—for example,
if your inbound address is bcc’d on a message.

	
from_email

	The value of the message’s From header. Anymail converts this to an
EmailAddress object, which makes it easier to access
the parsed address fields:

>>> str(message.from_email) # the fully-formatted address
'"Dr. Justin Customer, CPA" <jcustomer@example.com>'
>>> message.from_email.addr_spec # the "email" portion of the address
'jcustomer@example.com'
>>> message.from_email.display_name # empty string if no display name
'Dr. Justin Customer, CPA'
>>> message.from_email.domain
'example.com'
>>> message.from_email.username
'jcustomer'

(This API is borrowed from Python 3.6’s email.headerregistry.Address [https://docs.python.org/3.6/library/email.headerregistry.html#email.headerregistry.Address].)

If the message has an invalid or missing From header, this property will be None [https://docs.python.org/3.6/library/constants.html#None].
Note that From headers can be misleading; see envelope_sender.

	
to

	A list [https://docs.python.org/3.6/library/stdtypes.html#list] of of parsed EmailAddress objects from the To header,
or an empty list if that header is missing or invalid. Each address in the list
has the same properties as shown above for from_email.

See envelope_recipient if you need to know the actual inbound address
that received the inbound message.

	
cc

	A list [https://docs.python.org/3.6/library/stdtypes.html#list] of of parsed EmailAddress objects, like to,
but from the Cc headers.

	
subject

	The value of the message’s Subject header, as a str [https://docs.python.org/3.6/library/stdtypes.html#str], or None [https://docs.python.org/3.6/library/constants.html#None] if there is no Subject
header.

	
date

	The value of the message’s Date header, as a datetime [https://docs.python.org/3.6/library/datetime.html#datetime.datetime] object, or None [https://docs.python.org/3.6/library/constants.html#None]
if the Date header is missing or invalid. This attribute will almost always be an
aware datetime (with a timezone); in rare cases it can be naive if the sending mailer
indicated that it had no timezone information available.

The Date header is the sender’s claim about when it sent the message, which isn’t
necessarily accurate. (If you need to know when the message was received at your ESP,
that might be available in event.timestamp.
If not, you’d need to parse the messages’s Received headers,
which can be non-trivial.)

	
text

	The message’s plaintext message body as a str [https://docs.python.org/3.6/library/stdtypes.html#str], or None [https://docs.python.org/3.6/library/constants.html#None] if the
message doesn’t include a plaintext body.

	
html

	The message’s HTML message body as a str [https://docs.python.org/3.6/library/stdtypes.html#str], or None [https://docs.python.org/3.6/library/constants.html#None] if the
message doesn’t include an HTML body.

	
attachments

	A list [https://docs.python.org/3.6/library/stdtypes.html#list] of all (non-inline) attachments to the message, or an empty list if there are
no attachments. See Handling Inbound Attachments below for the contents of each list item.

	
inline_attachments

	A dict [https://docs.python.org/3.6/library/stdtypes.html#dict] mapping inline Content-ID references to attachment content. Each key is an
“unquoted” cid without angle brackets. E.g., if the html body contains
, you could get that inline image using
message.inline_attachments["abc123..."].

The content of each attachment is described in Handling Inbound Attachments below.

	
spam_score

	A float [https://docs.python.org/3.6/library/functions.html#float] spam score (usually from SpamAssassin) if your ESP provides it; otherwise None [https://docs.python.org/3.6/library/constants.html#None].
The range of values varies by ESP and spam-filtering configuration, so you may need to
experiment to find a useful threshold.

	
spam_detected

	If your ESP provides a simple yes/no spam determination, a bool [https://docs.python.org/3.6/library/functions.html#bool] indicating whether the
ESP thinks the inbound message is probably spam. Otherwise None [https://docs.python.org/3.6/library/constants.html#None]. (Most ESPs just assign
a spam_score and leave its interpretation up to you.)

	
stripped_text

	If provided by your ESP, a simplified version the inbound message’s plaintext body;
otherwise None [https://docs.python.org/3.6/library/constants.html#None].

What exactly gets “stripped” varies by ESP, but it often omits quoted replies
and sometimes signature blocks. (And ESPs who do offer stripped bodies
usually consider the feature experimental.)

	
stripped_html

	Like stripped_text, but for the HTML body. (Very few ESPs support this.)

Other headers, complex messages, etc.

You can use all of Python’s email.message.Message [https://docs.python.org/3.6/library/email.compat32-message.html#email.message.Message] features with an
AnymailInboundMessage. For example, you can access message headers using
Message’s mapping interface [https://docs.python.org/3.6/library/email.compat32-message.html#email.message.Message.__getitem__]:

message['reply-to'] # the Reply-To header (header keys are case-insensitive)
message.getall('DKIM-Signature') # list of all DKIM-Signature headers

And you can use Message methods like walk() [https://docs.python.org/3.6/library/email.compat32-message.html#email.message.Message.walk] and
get_content_type() [https://docs.python.org/3.6/library/email.compat32-message.html#email.message.Message.get_content_type] to examine more-complex
multipart MIME messages (digests, delivery reports, or whatever).

Handling Inbound Attachments

Anymail converts each inbound attachment to a specialized MIME object with
additional methods for handling attachments and integrating with Django.
It also backports some helpful MIME methods from newer versions of Python
to all versions supported by Anymail.

The attachment objects in an AnymailInboundMessage’s
attachments list and
inline_attachments dict
have these methods:

	
class AnymailInboundMessage

	
	
as_uploaded_file()

	Returns the attachment converted to a Django UploadedFile [https://docs.djangoproject.com/en/stable/ref/files/uploads/#django.core.files.uploadedfile.UploadedFile]
object. This is suitable for assigning to a model’s FileField [https://docs.djangoproject.com/en/stable/ref/models/fields/#django.db.models.FileField]
or ImageField [https://docs.djangoproject.com/en/stable/ref/models/fields/#django.db.models.ImageField]:

allow users to mail in jpeg attachments to set their profile avatars...
if attachment.get_content_type() == "image/jpeg":
 # for security, you must verify the content is really a jpeg
 # (you'll need to supply the is_valid_jpeg function)
 if is_valid_jpeg(attachment.get_content_bytes()):
 user.profile.avatar_image = attachment.as_uploaded_file()

See Django’s docs on Managing files [https://docs.djangoproject.com/en/stable/topics/files/] for more information
on working with uploaded files.

	
get_content_type()

	

	
get_content_maintype()

	

	
get_content_subtype()

	The type of attachment content, as specified by the sender. (But remember
attachments are essentially user-uploaded content, so you should
never trust the sender.)

See the Python docs for more info on email.message.Message.get_content_type() [https://docs.python.org/3.6/library/email.compat32-message.html#email.message.Message.get_content_type],
get_content_maintype() [https://docs.python.org/3.6/library/email.compat32-message.html#email.message.Message.get_content_maintype], and
get_content_subtype() [https://docs.python.org/3.6/library/email.compat32-message.html#email.message.Message.get_content_subtype].

(Note that you cannot determine the attachment type using code like
issubclass(attachment, email.mime.image.MIMEImage). You should instead use something
like attachment.get_content_maintype() == 'image'. The email package’s specialized
MIME subclasses are designed for constructing new messages, and aren’t used
for parsing existing, inbound email messages.)

	
get_filename()

	The original filename of the attachment, as specified by the sender.

Never use this filename directly to write files—that would be a huge security hole.
(What would your app do if the sender gave the filename “/etc/passwd” or “../settings.py”?)

	
is_attachment()

	Returns True [https://docs.python.org/3.6/library/constants.html#True] for a (non-inline) attachment, False [https://docs.python.org/3.6/library/constants.html#False] otherwise.
(Anymail back-ports Python 3.4.2’s is_attachment() [https://docs.python.org/3.6/library/email.message.html#email.message.EmailMessage.is_attachment] method
to all supported versions.)

	
is_inline_attachment()

	Returns True [https://docs.python.org/3.6/library/constants.html#True] for an inline attachment (one with Content-Disposition “inline”),
False [https://docs.python.org/3.6/library/constants.html#False] otherwise.

	
get_content_disposition()

	Returns the lowercased value (without parameters) of the attachment’s
Content-Disposition header. The return value should be either “inline”
or “attachment”, or None [https://docs.python.org/3.6/library/constants.html#None] if the attachment is somehow missing that header.

(Anymail back-ports Python 3.5’s get_content_disposition() [https://docs.python.org/3.6/library/email.compat32-message.html#email.message.Message.get_content_disposition]
method to all supported versions.)

	
get_content_text(charset=None, errors='replace')

	Returns the content of the attachment decoded to Unicode text.
(This is generally only appropriate for text or message-type attachments.)

If provided, charset will override the attachment’s declared charset. (This can be useful
if you know the attachment’s Content-Type has a missing or incorrect charset.)

The errors param is as in decode() [https://docs.python.org/3.6/library/stdtypes.html#bytes.decode]. The default “replace” substitutes the
Unicode “replacement character” for any illegal characters in the text.

Changed in version 2.1: Changed to use attachment’s declared charset by default,
and added errors option defaulting to replace.

	
get_content_bytes()

	Returns the raw content of the attachment as bytes. (This will automatically decode
any base64-encoded attachment data.)

Complex attachments

An Anymail inbound attachment is actually just an AnymailInboundMessage instance,
following the Python email package’s usual recursive representation of MIME messages.
All AnymailInboundMessage and email.message.Message [https://docs.python.org/3.6/library/email.compat32-message.html#email.message.Message] functionality
is available on attachment objects (though of course not all features are meaningful in all contexts).

This can be helpful for, e.g., parsing email messages that are forwarded as attachments
to an inbound message.

Anymail loads all attachment content into memory as it processes each inbound
message. This may limit the size of attachments your app can handle, beyond
any attachment size limits imposed by your ESP. Depending on how your ESP transmits
attachments, you may also need to adjust Django’s DATA_UPLOAD_MAX_MEMORY_SIZE [https://docs.djangoproject.com/en/stable/ref/settings/#std:setting-DATA_UPLOAD_MAX_MEMORY_SIZE]
setting to successfully receive larger attachments.

Inbound signal receiver functions

Your Anymail inbound signal receiver must be a function with this signature:

	
def my_handler(sender, event, esp_name, **kwargs):

	(You can name it anything you want.)

	Parameters

	
	sender (class) – The source of the event. (One of the
anymail.webhook.* View classes, but you
generally won’t examine this parameter; it’s
required by Django’s signal mechanism.)

	event (AnymailInboundEvent) – The normalized inbound event.
Almost anything you’d be interested in
will be in here—usually in the
AnymailInboundMessage
found in event.message.

	esp_name (str [https://docs.python.org/3.6/library/stdtypes.html#str]) – e.g., “SendMail” or “Postmark”. If you are working
with multiple ESPs, you can use this to distinguish
ESP-specific handling in your shared event processing.

	**kwargs – Required by Django’s signal mechanism
(to support future extensions).

	Returns

	nothing

	Raises

	any exceptions in your signal receiver will result
in a 400 HTTP error to the webhook. See discussion
below.

If (any of) your signal receivers raise an exception, Anymail
will discontinue processing the current batch of events and return
an HTTP 400 error to the ESP. Most ESPs respond to this by re-sending
the event(s) later, a limited number of times.

This is the desired behavior for transient problems (e.g., your
Django database being unavailable), but can cause confusion in other
error cases. You may want to catch some (or all) exceptions
in your signal receiver, log the problem for later follow up,
and allow Anymail to return the normal 200 success response
to your ESP.

Some ESPs impose strict time limits on webhooks, and will consider
them failed if they don’t respond within (say) five seconds.
And they may then retry sending these “failed” events, which could
cause duplicate processing in your code.
If your signal receiver code might be slow, you should instead
queue the event for later, asynchronous processing (e.g., using
something like Celery [http://www.celeryproject.org/]).

If your signal receiver function is defined within some other
function or instance method, you must use the weak=False
option when connecting it. Otherwise, it might seem to work at first,
but will unpredictably stop being called at some point—typically
on your production server, in a hard-to-debug way. See Django’s
docs on signals [https://docs.djangoproject.com/en/stable/topics/signals/] for more information.

Supported ESPs

Anymail currently supports these Email Service Providers.
Click an ESP’s name for specific Anymail settings required,
and notes about any quirks or limitations:

	Amazon SES

	Mailgun

	Mailjet

	Mandrill

	Postmark

	SendGrid

	SendinBlue

	SparkPost

Anymail feature support

The table below summarizes the Anymail features supported for each ESP.

	Email Service Provider

	Amazon SES

	Mailgun

	Mailjet

	Mandrill

	Postmark

	SendGrid

	SendinBlue

	SparkPost

	Anymail send options

	envelope_sender

	Yes

	Domain only

	Yes

	Domain only

	No

	No

	No

	Yes

	metadata

	Yes

	Yes

	Yes

	Yes

	Yes

	Yes

	Yes

	Yes

	merge_metadata

	No

	Yes

	Yes

	Yes

	Yes

	Yes

	No

	Yes

	send_at

	No

	Yes

	No

	Yes

	No

	Yes

	No

	Yes

	tags

	Yes

	Yes

	Max 1 tag

	Yes

	Max 1 tag

	Yes

	Max 1 tag

	Max 1 tag

	track_clicks

	No

	Yes

	Yes

	Yes

	Yes

	Yes

	No

	Yes

	track_opens

	No

	Yes

	Yes

	Yes

	Yes

	Yes

	No

	Yes

	Batch sending/merge and ESP templates

	template_id

	Yes

	No

	Yes

	Yes

	Yes

	Yes

	Yes

	Yes

	merge_data

	Yes

	Yes

	Yes

	Yes

	No

	Yes

	No

	Yes

	merge_global_data

	Yes

	(emulated)

	Yes

	Yes

	Yes

	Yes

	Yes

	Yes

	Status and event tracking

	anymail_status

	Yes

	Yes

	Yes

	Yes

	Yes

	Yes

	Yes

	Yes

	AnymailTrackingEvent from webhooks

	Yes

	Yes

	Yes

	Yes

	Yes

	Yes

	Yes

	Yes

	Inbound handling

	AnymailInboundEvent from webhooks

	Yes

	Yes

	Yes

	Yes

	Yes

	Yes

	No

	Yes

Trying to choose an ESP? Please don’t start with this table. It’s far more
important to consider things like an ESP’s deliverability stats, latency, uptime,
and support for developers. The number of extra features an ESP offers is almost
meaningless. (And even specific features don’t matter if you don’t plan to use them.)

Other ESPs

Don’t see your favorite ESP here? Anymail is designed to be extensible.
You can suggest that Anymail add an ESP, or even contribute
your own implementation to Anymail. See Contributing.

Amazon SES

Anymail integrates with Amazon Simple Email Service [https://aws.amazon.com/ses/] (SES) using the Boto 3 [https://boto3.readthedocs.io/en/stable/]
AWS SDK for Python, and includes sending, tracking, and inbound receiving capabilities.

Alternatives

At least two other packages offer Django integration with
Amazon SES: django-amazon-ses [https://pypi.org/project/django-amazon-ses/] and django-ses [https://pypi.org/project/django-ses/].
Depending on your needs, one of them may be more appropriate than Anymail.

New in version 2.1.

Installation

You must ensure the boto3 [https://pypi.org/project/boto3/] package is installed to use Anymail’s Amazon SES
backend. Either include the “amazon_ses” option when you install Anymail:

$ pip install django-anymail[amazon_ses]

or separately run pip install boto3.

To send mail with Anymail’s Amazon SES backend, set:

EMAIL_BACKEND = "anymail.backends.amazon_ses.EmailBackend"

in your settings.py.

In addition, you must make sure boto3 is configured with AWS credentials having the
necessary IAM permissions.
There are several ways to do this; see Credentials [https://boto3.readthedocs.io/en/stable/guide/configuration.html#configuring-credentials] in the Boto docs for options.
Usually, an IAM role for EC2 instances, standard Boto environment variables,
or a shared AWS credentials file will be appropriate. For more complex cases,
use Anymail’s AMAZON_SES_CLIENT_PARAMS
setting to customize the Boto session.

Limitations and quirks

	Hard throttling

	Like most ESPs, Amazon SES throttles sending [https://docs.aws.amazon.com/ses/latest/DeveloperGuide/manage-sending-limits.html] for new customers. But unlike
most ESPs, SES does not queue and slowly release throttled messages. Instead, it
hard-fails the send API call. A strategy for retrying errors
is required with any ESP; you’re likely to run into it right away with Amazon SES.

	Tags limitations

	Amazon SES’s handling for tags is a bit different from other ESPs.
Anymail tries to provide a useful, portable default behavior for its
tags feature. See Tags and metadata
below for more information and additional options.

	No merge_metadata

	Amazon SES’s batch sending API does not support the custom headers Anymail uses
for metadata, so Anymail’s merge_metadata
feature is not available. (See Tags and metadata below for more information.)

	Open and click tracking overrides

	Anymail’s track_opens and
track_clicks are not supported.
Although Amazon SES does support open and click tracking, it doesn’t offer
a simple mechanism to override the settings for individual messages. If you
need this feature, provide a custom ConfigurationSetName in Anymail’s
esp_extra.

	No delayed sending

	Amazon SES does not support send_at.

	No global send defaults for non-Anymail options

	With the Amazon SES backend, Anymail’s global send defaults
are only supported for Anymail’s added message options (like
metadata and
esp_extra), not for standard EmailMessage
attributes like bcc or from_email.

	Arbitrary alternative parts allowed

	Amazon SES is one of the few ESPs that does support sending arbitrary alternative
message parts (beyond just a single text/plain and text/html part).

	Spoofed To header and multiple From emails allowed

	Amazon SES is one of the few ESPs that supports spoofing the To header
(see Additional headers) and supplying multiple addresses in a message’s from_email.
(Most ISPs consider these to be very strong spam signals, and using either them will almost
certainly prevent delivery of your mail.)

	Template limitations

	Messages sent with templates have a number of additional limitations, such as not
supporting attachments. See Batch sending/merge and ESP templates below.

Tags and metadata

Amazon SES provides two mechanisms for associating additional data with sent messages,
which Anymail uses to implement its tags
and metadata features:

	SES Message Tags can be used for filtering or segmenting CloudWatch metrics and
dashboards, and are available to Kinesis Firehose streams. (See “How do message
tags work?” in the Amazon blog post Introducing Sending Metrics [https://aws.amazon.com/blogs/ses/introducing-sending-metrics/].)

By default, Anymail does not use SES Message Tags. They have strict limitations
on characters allowed, and are not consistently available to tracking webhooks.
(They may be included in SES Event Publishing [https://docs.aws.amazon.com/ses/latest/DeveloperGuide/monitor-using-event-publishing.html] but not SES Notifications [https://docs.aws.amazon.com/ses/latest/DeveloperGuide/monitor-sending-using-notifications.html].)

	Custom Email Headers are available to all SNS notifications (webhooks), but
not to CloudWatch or Kinesis.

These are ordinary extension headers included in the sent message (and visible to
recipients who view the full headers). There are no restrictions on characters allowed.

By default, Anymail uses only custom email headers. A message’s
metadata is sent JSON-encoded in a custom
X-Metadata header, and a message’s tags
are sent in custom X-Tag headers. Both are available in Anymail’s
tracking webhooks.

Because Anymail tags are often used for
segmenting reports, Anymail has an option to easily send an Anymail tag
as an SES Message Tag that can be used in CloudWatch. Set the Anymail setting
AMAZON_SES_MESSAGE_TAG_NAME
to the name of an SES Message Tag whose value will be the single Anymail tag
on the message. For example, with this setting:

ANYMAIL = {
 ...
 "AMAZON_SES_MESSAGE_TAG_NAME": "Type",
}

this send will appear in CloudWatch with the SES Message Tag "Type": "Marketing":

message = EmailMessage(...)
message.tags = ["Marketing"]
message.send()

Anymail’s AMAZON_SES_MESSAGE_TAG_NAME
setting is disabled by default. If you use it, then only a single tag is supported,
and both the tag and the name must be limited to alphanumeric, hyphen, and underscore
characters.

For more complex use cases, set the SES Tags parameter directly in Anymail’s
esp_extra. See the example below. (Because custom headers do not
work with SES’s SendBulkTemplatedEmail call, esp_extra Tags is the only way to attach
data to SES messages also using Anymail’s template_id
and merge_data features, and the
merge_metadata cannot be supported.)

esp_extra support

To use Amazon SES features not directly supported by Anymail, you can
set a message’s esp_extra to
a dict [https://docs.python.org/3.6/library/stdtypes.html#dict] that will be merged into the params for the SendRawEmail [https://docs.aws.amazon.com/ses/latest/APIReference/API_SendRawEmail.html]
or SendBulkTemplatedEmail [https://docs.aws.amazon.com/ses/latest/APIReference/API_SendBulkTemplatedEmail.html] SES API call.

Example:

message.esp_extra = {
 # Override AMAZON_SES_CONFIGURATION_SET_NAME for this message
 'ConfigurationSetName': 'NoOpenOrClickTrackingConfigSet',
 # Authorize a custom sender
 'SourceArn': 'arn:aws:ses:us-east-1:123456789012:identity/example.com',
 # Set Amazon SES Message Tags
 'Tags': [
 # (Names and values must be A-Z a-z 0-9 - and _ only)
 {'Name': 'UserID', 'Value': str(user_id)},
 {'Name': 'TestVariation', 'Value': 'Subject-Emoji-Trial-A'},
],
}

(You can also set "esp_extra" in Anymail’s global send defaults
to apply it to all messages.)

Batch sending/merge and ESP templates

Amazon SES offers ESP stored templates
and batch sending with per-recipient merge data.
See Amazon’s Sending personalized email [https://docs.aws.amazon.com/ses/latest/DeveloperGuide/send-personalized-email-api.html] guide for more information.

When you set a message’s template_id
to the name of one of your SES templates, Anymail will use the SES
SendBulkTemplatedEmail [https://docs.aws.amazon.com/ses/latest/APIReference/API_SendBulkTemplatedEmail.html] call to send template messages personalized with data
from Anymail’s normalized merge_data
and merge_global_data
message attributes.

message = EmailMessage(
 from_email="shipping@example.com",
 # you must omit subject and body (or set to None) with Amazon SES templates
 to=["alice@example.com", "Bob <bob@example.com>"]
)
message.template_id = "MyTemplateName" # Amazon SES TemplateName
message.merge_data = {
 'alice@example.com': {'name': "Alice", 'order_no': "12345"},
 'bob@example.com': {'name': "Bob", 'order_no': "54321"},
}
message.merge_global_data = {
 'ship_date': "May 15",
}

Amazon’s templated email APIs don’t support several features available for regular email.
When template_id is used:

	Attachments are not supported

	Extra headers are not supported

	Overriding the template’s subject or body is not supported

	Anymail’s metadata is not supported

	Anymail’s tags are only supported
with the AMAZON_SES_MESSAGE_TAG_NAME
setting; only a single tag is allowed, and the tag is not directly available
to webhooks. (See Tags and metadata above.)

Status tracking webhooks

Anymail can provide normalized status tracking notifications
for messages sent through Amazon SES. SES offers two (confusingly) similar kinds of
tracking, and Anymail supports both:

	SES Notifications [https://docs.aws.amazon.com/ses/latest/DeveloperGuide/monitor-sending-using-notifications.html] include delivered, bounced, and complained (spam) Anymail
event_types. (Enabling these
notifications may allow you to disable SES “email feedback forwarding.”)

	SES Event Publishing [https://docs.aws.amazon.com/ses/latest/DeveloperGuide/monitor-using-event-publishing.html] also includes delivered, bounced and complained events,
as well as sent, rejected, opened, clicked, and (template rendering) failed.

Both types of tracking events are delivered to Anymail’s webhook URL through
Amazon Simple Notification Service (SNS) subscriptions.

Amazon’s naming here can be really confusing. We’ll try to be clear about “SES Notifications”
vs. “SES Event Publishing” as the two different kinds of SES tracking events.
And then distinguish all of that from “SNS”—the publish/subscribe service
used to notify Anymail’s tracking webhooks about both kinds of SES tracking event.

To use Anymail’s status tracking webhooks with Amazon SES:

	First, configure Anymail webhooks and deploy your
Django project. (Deploying allows Anymail to confirm the SNS subscription for you
in step 3.)

Then in Amazon’s Simple Notification Service console:

	Create an SNS Topic [https://docs.aws.amazon.com/sns/latest/dg/CreateTopic.html] to receive Amazon SES tracking events.
The exact topic name is up to you; choose something meaningful like SES_Tracking_Events.

	Subscribe Anymail’s tracking webhook to the SNS Topic you just created. In the SNS
console, click into the topic from step 2, then click the “Create subscription” button.
For protocol choose HTTPS. For endpoint enter:

https://random:random@yoursite.example.com/anymail/amazon_ses/tracking/

	random:random is an ANYMAIL_WEBHOOK_SECRET shared secret

	yoursite.example.com is your Django site

Anymail will automatically confirm the SNS subscription. (For other options, see
Confirming SNS subscriptions below.)

Finally, switch to Amazon’s Simple Email Service console:

	If you want to use SES Notifications: Follow Amazon’s guide to
configure SES notifications through SNS [https://docs.aws.amazon.com/ses/latest/DeveloperGuide/configure-sns-notifications.html], using the SNS Topic you created above.
Choose any event types you want to receive. Be sure to choose “Include original headers”
if you need access to Anymail’s metadata or
tags in your webhook handlers.

	If you want to use SES Event Publishing:

	Follow Amazon’s guide to create an SES “Configuration Set” [https://docs.aws.amazon.com/ses/latest/DeveloperGuide/event-publishing-create-configuration-set.html]. Name it something meaningful,
like TrackingConfigSet.

	Follow Amazon’s guide to add an SNS event destination for SES event publishing [https://docs.aws.amazon.com/ses/latest/DeveloperGuide/event-publishing-add-event-destination-sns.html], using the
SNS Topic you created above. Choose any event types you want to receive.

	Update your Anymail settings to send using this Configuration Set by default:

ANYMAIL = {
 ...
 "AMAZON_SES_CONFIGURATION_SET_NAME": "TrackingConfigSet",
}

Caution

The delivery, bounce, and complaint event types are available in both SES Notifications
and SES Event Publishing. If you’re using both, don’t enable the same events in both
places, or you’ll receive duplicate notifications with different
event_ids.

Note that Amazon SES’s open and click tracking does not distinguish individual recipients.
If you send a single message to multiple recipients, Anymail will call your tracking handler
with the “opened” or “clicked” event for every original recipient of the message, including
all to, cc and bcc addresses. (Amazon recommends avoiding multiple recipients with SES.)

In your tracking signal receiver, the normalized AnymailTrackingEvent’s
esp_event will be set to the
the parsed, top-level JSON event object from SES: either SES Notification contents [https://docs.aws.amazon.com/ses/latest/DeveloperGuide/notification-contents.html]
or SES Event Publishing contents [https://docs.aws.amazon.com/ses/latest/DeveloperGuide/event-publishing-retrieving-sns-contents.html]. (The two formats are nearly identical.)
You can use this to obtain SES Message Tags (see Tags and metadata) from
SES Event Publishing notifications:

from anymail.signals import tracking
from django.dispatch import receiver

@receiver(tracking) # add weak=False if inside some other function/class
def handle_tracking(sender, event, esp_name, **kwargs):
 if esp_name == "Amazon SES":
 try:
 message_tags = {
 name: values[0]
 for name, values in event.esp_event["mail"]["tags"].items()}
 except KeyError:
 message_tags = None # SES Notification (not Event Publishing) event
 print("Message %s to %s event %s: Message Tags %r" % (
 event.message_id, event.recipient, event.event_type, message_tags))

Anymail does not currently check SNS signature verification [https://docs.aws.amazon.com/sns/latest/dg/SendMessageToHttp.verify.signature.html], because Amazon has not
released a standard way to do that in Python. Instead, Anymail relies on your
WEBHOOK_SECRET to verify SNS notifications are from an
authorized source.

Note

Amazon SNS’s default policy for handling HTTPS notification failures is to retry
three times, 20 seconds apart, and then drop the notification. That means
if your webhook is ever offline for more than one minute, you may miss events.

For most uses, it probably makes sense to configure an SNS retry policy [https://docs.aws.amazon.com/sns/latest/dg/DeliveryPolicies.html] with more
attempts over a longer period. E.g., 20 retries ranging from 5 seconds minimum
to 600 seconds (5 minutes) maximum delay between attempts, with geometric backoff.

Also, SNS does not guarantee notifications will be delivered to HTTPS subscribers
like Anymail webhooks. The longest SNS will ever keep retrying is one hour total. If you need
retries longer than that, or guaranteed delivery, you may need to implement your own queuing
mechanism with something like Celery or directly on Amazon Simple Queue Service (SQS).

Inbound webhook

You can receive email through Amazon SES with Anymail’s normalized inbound
handling. See Receiving email with Amazon SES [https://docs.aws.amazon.com/ses/latest/DeveloperGuide/receiving-email.html] for background.

Configuring Anymail’s inbound webhook for Amazon SES is similar to installing the
tracking webhook. You must use a different SNS Topic
for inbound.

To use Anymail’s inbound webhook with Amazon SES:

	First, if you haven’t already, configure Anymail webhooks
and deploy your Django project. (Deploying allows Anymail to confirm the SNS subscription
for you in step 3.)

	Create an SNS Topic [https://docs.aws.amazon.com/sns/latest/dg/CreateTopic.html] to receive Amazon SES inbound events.
The exact topic name is up to you; choose something meaningful like SES_Inbound_Events.
(If you are also using Anymail’s tracking events, this must be a different SNS Topic.)

	Subscribe Anymail’s inbound webhook to the SNS Topic you just created. In the SNS
console, click into the topic from step 2, then click the “Create subscription” button.
For protocol choose HTTPS. For endpoint enter:

https://random:random@yoursite.example.com/anymail/amazon_ses/inbound/

	random:random is an ANYMAIL_WEBHOOK_SECRET shared secret

	yoursite.example.com is your Django site

Anymail will automatically confirm the SNS subscription. (For other options, see
Confirming SNS subscriptions below.)

	Next, follow Amazon’s guide to Setting up Amazon SES email receiving [https://docs.aws.amazon.com/ses/latest/DeveloperGuide/receiving-email-setting-up.html].
There are several steps. Come back here when you get to “Action Options”
in the last step, “Creating Receipt Rules.”

	Anymail supports two SES receipt actions: S3 and SNS. (Both actually use SNS.)
You can choose either one: the SNS action is easier to set up, but the S3 action
allows you to receive larger messages and can be more robust.
(You can change at any time, but don’t use both simultaneously.)

	For the SNS action: choose the SNS Topic you created in step 2. Anymail will handle
either Base64 or UTF-8 encoding; use Base64 if you’re not sure.

	For the S3 action: choose or create any S3 bucket that Boto will be able to read.
(See IAM permissions; don’t use a world-readable bucket!)
“Object key prefix” is optional. Anymail does not currently support the
“Encrypt message” option. Finally, choose the SNS Topic you created in step 2.

Amazon SES will likely deliver a test message to your Anymail inbound handler immediately
after you complete the last step.

If you are using the S3 receipt action, note that Anymail does not delete the S3 object.
You can delete it from your code after successful processing, or set up S3 bucket policies
to automatically delete older messages. In your inbound handler, you can retrieve the S3
object key by prepending the “object key prefix” (if any) from your receipt rule to Anymail’s
event.event_id.

Amazon SNS imposes a 15 second limit on all notifications. This includes time to download
the message (if you are using the S3 receipt action) and any processing in your
signal receiver. If the total takes longer, SNS will consider the notification failed
and will make several repeat attempts. To avoid problems, it’s essential any lengthy
operations are offloaded to a background task.

Amazon SNS’s default retry policy times out after one minute of failed notifications.
If your webhook is ever unreachable for more than a minute, you may miss inbound mail.
You’ll probably want to adjust your SNS topic settings to reduce the chances of that.
See the note about retry policies in the tracking
webhooks discussion above.

In your inbound signal receiver, the normalized AnymailTrackingEvent’s
esp_event will be set to the
the parsed, top-level JSON object described in SES Email Receiving contents [https://docs.aws.amazon.com/ses/latest/DeveloperGuide/receiving-email-notifications-contents.html].

Confirming SNS subscriptions

Amazon SNS requires HTTPS endpoints (webhooks) to confirm they actually want to subscribe
to an SNS Topic. See Sending SNS messages to HTTPS endpoints [https://docs.aws.amazon.com/sns/latest/dg/SendMessageToHttp.html] in the Amazon SNS docs
for more information.

(This has nothing to do with verifying email identities in Amazon SES,
and is not related to email recipients confirming subscriptions to your content.)

Anymail will automatically handle SNS endpoint confirmation for you, for both tracking and inbound
webhooks, if both:

	You have deployed your Django project with Anymail webhooks enabled
and an Anymail WEBHOOK_SECRET set, before subscribing the SNS Topic
to the webhook URL.

(If you subscribed the SNS topic too early, you can re-send the confirmation request later
from the Subscriptions section of the Amazon SNS dashboard.)

	The SNS endpoint URL includes the correct Anymail WEBHOOK_SECRET
as HTTP basic authentication. (Amazon SNS only allows this with https urls, not plain http.)

Anymail requires a valid secret to ensure the subscription request is coming from you, not some other
AWS user.

If you do not want Anymail to automatically confirm SNS subscriptions for its webhook URLs, set
AMAZON_SES_AUTO_CONFIRM_SNS_SUBSCRIPTIONS
to False [https://docs.python.org/3.6/library/constants.html#False] in your ANYMAIL settings.

When auto-confirmation is disabled (or if Anymail receives an unexpected confirmation request),
it will raise an AnymailWebhookValidationFailure, which should show up in your Django error
logging. The error message will include the Token you can use to manually confirm the subscription
in the Amazon SNS dashboard or through the SNS API.

Settings

Additional Anymail settings for use with Amazon SES:

AMAZON_SES_CLIENT_PARAMS

Optional. Additional client parameters [https://boto3.readthedocs.io/en/stable/reference/core/session.html#boto3.session.Session.client] Anymail should use to create the boto3 session client. Example:

ANYMAIL = {
 ...
 "AMAZON_SES_CLIENT_PARAMS": {
 # example: override normal Boto credentials specifically for Anymail
 "aws_access_key_id": os.getenv("AWS_ACCESS_KEY_FOR_ANYMAIL_SES"),
 "aws_secret_access_key": os.getenv("AWS_SECRET_KEY_FOR_ANYMAIL_SES"),
 "region_name": "us-west-2",
 # override other default options
 "config": {
 "connect_timeout": 30,
 "read_timeout": 30,
 }
 },
}

In most cases, it’s better to let Boto obtain its own credentials through one of its other
mechanisms: an IAM role for EC2 instances, standard AWS_ACCESS_KEY_ID, AWS_SECRET_ACCESS_KEY
and AWS_SESSION_TOKEN environment variables, or a shared AWS credentials file.

AMAZON_SES_SESSION_PARAMS

Optional. Additional session parameters [https://boto3.readthedocs.io/en/stable/reference/core/session.html#boto3.session.Session] Anymail should use to create the boto3 Session. Example:

ANYMAIL = {
 ...
 "AMAZON_SES_SESSION_PARAMS": {
 "profile_name": "anymail-testing",
 },
}

AMAZON_SES_CONFIGURATION_SET_NAME

Optional. The name of an Amazon SES Configuration Set [https://docs.aws.amazon.com/ses/latest/DeveloperGuide/using-configuration-sets.html] Anymail should use when sending messages.
The default is to send without any Configuration Set. Note that a Configuration Set is
required to receive SES Event Publishing tracking events. See Status tracking webhooks above.

You can override this for individual messages with esp_extra.

AMAZON_SES_MESSAGE_TAG_NAME

Optional, default None [https://docs.python.org/3.6/library/constants.html#None]. The name of an Amazon SES “Message Tag” whose value is set
from a message’s Anymail tags.
See Tags and metadata above.

AMAZON_SES_AUTO_CONFIRM_SNS_SUBSCRIPTIONS

Optional boolean, default True [https://docs.python.org/3.6/library/constants.html#True]. Set to False [https://docs.python.org/3.6/library/constants.html#False] to prevent Anymail webhooks from automatically
accepting Amazon SNS subscription confirmation requests.
See Confirming SNS subscriptions above.

IAM permissions

Anymail requires IAM permissions that will allow it to use these actions:

	To send mail:

	Ordinary (non-templated) sends: ses:SendRawEmail

	Template/merge sends: ses:SendBulkTemplatedEmail

	To automatically confirm
webhook SNS subscriptions: sns:ConfirmSubscription

	For status tracking webhooks: no special permissions

	To receive inbound mail:

	With an “SNS action” receipt rule: no special permissions

	With an “S3 action” receipt rule: s3:GetObject on the S3 bucket
and prefix used (or S3 Access Control List read access for inbound
messages in that bucket)

This IAM policy covers all of those:

{
 "Version": "2012-10-17",
 "Statement": [{
 "Effect": "Allow",
 "Action": ["ses:SendRawEmail", "ses:SendBulkTemplatedEmail"],
 "Resource": "*"
 }, {
 "Effect": "Allow",
 "Action": ["sns:ConfirmSubscription"],
 "Resource": ["arn:aws:sns:*:*:*"]
 }, {
 "Effect": "Allow",
 "Action": ["s3:GetObject"],
 "Resource": ["arn:aws:s3:::MY-PRIVATE-BUCKET-NAME/MY-INBOUND-PREFIX/*"]
 }]
}

Following the principle of least privilege [https://docs.aws.amazon.com/IAM/latest/UserGuide/best-practices.html#grant-least-privilege], you should omit permissions
for any features you aren’t using, and you may want to add additional restrictions:

	For Amazon SES sending, you can add conditions to restrict senders, recipients, times,
or other properties. See Amazon’s Controlling access to Amazon SES [https://docs.aws.amazon.com/ses/latest/DeveloperGuide/control-user-access.html] guide.

	For auto-confirming webhooks, you might limit the resource to SNS topics owned
by your AWS account, and/or specific topic names or patterns. E.g.,
"arn:aws:sns:*:0000000000000000:SES_*_Events" (replacing the zeroes with
your numeric AWS account id). See Amazon’s guide to Amazon SNS ARNs [https://docs.aws.amazon.com/sns/latest/dg/UsingIAMwithSNS.html#SNS_ARN_Format].

	For inbound S3 delivery, there are multiple ways to control S3 access and data
retention. See Amazon’s Managing access permissions to your Amazon S3 resources [https://docs.aws.amazon.com/AmazonS3/latest/dev/s3-access-control.html].
(And obviously, you should never store incoming emails to a public bucket!)

Also, you may need to grant Amazon SES (but not Anymail) permission to write
to your inbound bucket. See Amazon’s Giving permissions to Amazon SES for email receiving [https://docs.aws.amazon.com/ses/latest/DeveloperGuide/receiving-email-permissions.html].

	For all operations, you can limit source IP, allowable times, user agent, and more.
(Requests from Anymail will include “django-anymail/version” along with Boto’s user-agent.)
See Amazon’s guide to IAM condition context keys [https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_condition-keys.html].

Mailgun

Anymail integrates with the Mailgun [https://mailgun.com]
transactional email service from Rackspace, using their
REST API.

Settings

EMAIL_BACKEND

To use Anymail’s Mailgun backend, set:

EMAIL_BACKEND = "anymail.backends.mailgun.EmailBackend"

in your settings.py.

MAILGUN_API_KEY

Required. Your Mailgun API key:

ANYMAIL = {
 ...
 "MAILGUN_API_KEY": "<your API key>",
}

Anymail will also look for MAILGUN_API_KEY at the
root of the settings file if neither ANYMAIL["MAILGUN_API_KEY"]
nor ANYMAIL_MAILGUN_API_KEY is set.

MAILGUN_SENDER_DOMAIN

If you are using a specific Mailgun sender domain [https://help.mailgun.com/hc/en-us/articles/202256730-How-do-I-pick-a-domain-name-for-my-Mailgun-account-]
that is different from your messages’ from_email domains,
set this to the domain you’ve configured in your Mailgun account.

If your messages’ from_email domains always match a configured
Mailgun sender domain, this setting is not needed.

See Email sender domain below for examples.

MAILGUN_API_URL

The base url for calling the Mailgun API. It does not include
the sender domain. (Anymail figures this out
for you.)

The default is MAILGUN_API_URL = "https://api.mailgun.net/v3", which connects
to Mailgun’s US service. You must override this if you are using Mailgun’s European
region:

ANYMAIL = {
 "MAILGUN_API_KEY": "...",
 "MAILGUN_API_URL": "https://api.eu.mailgun.net/v3",
 # ...
}

Email sender domain

Mailgun’s API requires identifying the sender domain.
By default, Anymail uses the domain of each messages’s from_email
(e.g., “example.com” for “from@example.com”).

You will need to override this default if you are using
a dedicated Mailgun sender domain [https://help.mailgun.com/hc/en-us/articles/202256730-How-do-I-pick-a-domain-name-for-my-Mailgun-account-] that is different from
a message’s from_email domain.

For example, if you are sending from “orders@example.com”, but your
Mailgun account is configured for “mail1.example.com”, you should provide
MAILGUN_SENDER_DOMAIN in your settings.py:

ANYMAIL = {
 ...
 "MAILGUN_API_KEY": "<your API key>",
 "MAILGUN_SENDER_DOMAIN": "mail1.example.com"
}

If you need to override the sender domain for an individual message,
use Anymail’s envelope_sender
(only the domain is used; anything before the @ is ignored):

message = EmailMessage(from_email="marketing@example.com", ...)
message.envelope_sender = "anything@mail2.example.com" # the "anything@" is ignored

Changed in version 2.0: Earlier Anymail versions looked for a special sender_domain key in the message’s
esp_extra to override Mailgun’s sender domain.
This is still supported, but may be deprecated in a future release. Using
envelope_sender as shown above is now preferred.

exp_extra support

Anymail’s Mailgun backend will pass all esp_extra
values directly to Mailgun. You can use any of the (non-file) parameters listed in the
Mailgun sending docs [https://documentation.mailgun.com/api-sending.html#sending]. Example:

message = AnymailMessage(...)
message.esp_extra = {
 'o:testmode': 'yes', # use Mailgun's test mode
}

Limitations and quirks

	Attachments require filenames

	Mailgun has an undocumented API requirement [https://mailgun.uservoice.com/forums/156243-feature-requests/suggestions/35668606] that every attachment must have a
filename. Attachments with missing filenames are silently dropped from the sent
message. Similarly, every inline attachment must have a Content-ID.

To avoid unexpected behavior, Anymail will raise an
AnymailUnsupportedFeature error if you attempt to send
a message through Mailgun with any attachments that don’t have filenames (or inline
attachments that don’t have Content-IDs).

Ensure your attachments have filenames by using
message.attach_file(filename) [https://docs.djangoproject.com/en/stable/topics/email/#django.core.mail.EmailMessage],
message.attach(content, filename="...") [https://docs.djangoproject.com/en/stable/topics/email/#django.core.mail.EmailMessage],
or if you are constructing your own MIME objects to attach,
mimeobj.add_header("Content-Disposition", "attachment", filename="...") [https://docs.python.org/3.6/library/email.compat32-message.html#email.message.Message.add_header].

Ensure your inline attachments have Content-IDs by using Anymail’s
inline image helpers, or if you are constructing your own MIME objects,
mimeobj.add_header("Content-ID", "...") [https://docs.python.org/3.6/library/email.compat32-message.html#email.message.Message.add_header] and
mimeobj.add_header("Content-Disposition", "inline") [https://docs.python.org/3.6/library/email.compat32-message.html#email.message.Message.add_header].

Changed in version 4.3: Earlier Anymail releases did not check for these cases, and attachments
without filenames/Content-IDs would be ignored by Mailgun without notice.

	Envelope sender uses only domain

	Anymail’s envelope_sender is used to
select your Mailgun sender domain. For
obvious reasons, only the domain portion applies. You can use anything before
the @, and it will be ignored.

	Using merge_metadata with merge_data

	If you use both Anymail’s merge_data
and merge_metadata features, make sure your
merge_data keys do not start with v:. (It’s a good idea anyway to avoid colons
and other special characters in merge_data keys, as this isn’t generally portable
to other ESPs.)

The same underlying Mailgun feature (“recipient-variables”) is used to implement
both Anymail features. To avoid conflicts, Anymail prepends v: to recipient
variables needed for merge_metadata. (This prefix is stripped as Mailgun prepares
the message to send, so it won’t be present in your Mailgun API logs or the metadata
that is sent to tracking webhooks.)

	merge_metadata values default to empty string

	If you use Anymail’s merge_metadata feature,
and you supply metadata keys for some recipients but not others, Anymail will first
try to resolve the missing keys in metadata,
and if they are not found there will default them to an empty string value.

Your tracking webhooks will receive metadata values (either that you provided or the
default empty string) for every key used with any recipient in the send.

Batch sending/merge and ESP templates

Mailgun does not offer ESP stored templates,
so Anymail’s template_id message
attribute is not supported with the Mailgun backend.

Mailgun does support batch sending with per-recipient
merge data. You can refer to Mailgun “recipient variables” in your
message subject and body, and supply the values with Anymail’s
normalized merge_data
and merge_global_data
message attributes:

message = EmailMessage(
 ...
 subject="Your order %recipient.order_no% has shipped",
 body="""Hi %recipient.name%,
 We shipped your order %recipient.order_no%
 on %recipient.ship_date%.""",
 to=["alice@example.com", "Bob <bob@example.com>"]
)
(you'd probably also set a similar html body with %recipient.___% variables)
message.merge_data = {
 'alice@example.com': {'name': "Alice", 'order_no': "12345"},
 'bob@example.com': {'name': "Bob", 'order_no': "54321"},
}
message.merge_global_data = {
 'ship_date': "May 15" # Anymail maps globals to all recipients
}

Mailgun does not natively support global merge data. Anymail emulates
the capability by copying any merge_global_data values to each
recipient’s section in Mailgun’s “recipient-variables” API parameter.

See the Mailgun batch sending [https://documentation.mailgun.com/user_manual.html#batch-sending] docs for more information.

Status tracking webhooks

Changed in version 4.0: Added support for Mailgun’s June, 2018 (non-“legacy”) webhook format.

If you are using Anymail’s normalized status tracking, enter
the url in the Mailgun webhooks dashboard [https://mailgun.com/app/webhooks]. (Be sure to select the correct sending
domain—Mailgun’s sandbox and production domains have separate webhook settings.)

Mailgun allows you to enter a different URL for each event type: just enter this same
Anymail tracking URL for all events you want to receive:

https://random:random@yoursite.example.com/anymail/mailgun/tracking/

	random:random is an ANYMAIL_WEBHOOK_SECRET shared secret

	yoursite.example.com is your Django site

Mailgun implements a limited form of webhook signing, and Anymail will verify
these signatures (based on your MAILGUN_API_KEY
Anymail setting). By default, Mailgun’s webhook signature provides similar security
to Anymail’s shared webhook secret, so it’s acceptable to omit the
ANYMAIL_WEBHOOK_SECRET setting (and “{random}:{random}@” portion of the
webhook url) with Mailgun webhooks.

Mailgun will report these Anymail event_types:
delivered, rejected, bounced, complained, unsubscribed, opened, clicked.

The event’s esp_event field will be
the parsed Mailgun webhook payload [https://documentation.mailgun.com/en/latest/user_manual.html#webhooks] as a Python dict [https://docs.python.org/3.6/library/stdtypes.html#dict] with "signature" and
"event-data" keys.

Anymail uses Mailgun’s webhook token [https://docs.python.org/3.6/library/token.html#module-token] as its normalized
event_id, rather than Mailgun’s
event-data id [https://docs.python.org/3.6/library/functions.html#id] (which is only guaranteed to be unique during a single day).
If you need the event-data id, it can be accessed in your webhook handler as
event.esp_event["event-data"]["id"]. (This can be helpful for working with
Mailgun’s other event APIs.)

Note

Mailgun legacy webhooks

In late June, 2018, Mailgun introduced a new set of webhooks with an improved
payload design, and at the same time renamed their original webhooks to “Legacy
Webhooks.”

Anymail v4.0 and later supports both new and legacy Mailgun webhooks, and the same
Anymail webhook url works as either. Earlier Anymail versions can only be used
as legacy webhook urls.

The new (non-legacy) webhooks are preferred, particularly with Anymail’s
metadata and
tags features. But if you have already
configured the legacy webhooks, there is no need to change.

If you are using Mailgun’s legacy webhooks:

	The event.esp_event field
will be a Django QueryDict [https://docs.djangoproject.com/en/stable/ref/request-response/#django.http.QueryDict] of Mailgun event fields (the
raw POST data provided by legacy webhooks).

	You should avoid using “body-plain,” “h,” “message-headers,” “message-id” or “tag”
as metadata keys. A design limitation in
Mailgun’s legacy webhooks prevents Anymail from reliably retrieving this metadata
from opened, clicked, and unsubscribed events. (This is not an issue with the
newer, non-legacy webhooks.)

Inbound webhook

If you want to receive email from Mailgun through Anymail’s normalized inbound
handling, follow Mailgun’s Receiving, Storing and Fowarding Messages [https://documentation.mailgun.com/en/latest/user_manual.html#receiving-forwarding-and-storing-messages] guide to set up
an inbound route that forwards to Anymail’s inbound webhook. (You can configure routes
using Mailgun’s API, or simply using the Mailgun routes dashboard [https://app.mailgun.com/app/routes].)

The action for your route will be either:

forward("https://random:random@yoursite.example.com/anymail/mailgun/inbound/")
forward("https://random:random@yoursite.example.com/anymail/mailgun/inbound_mime/")

	random:random is an ANYMAIL_WEBHOOK_SECRET shared secret

	yoursite.example.com is your Django site

Anymail accepts either of Mailgun’s “fully-parsed” (…/inbound/) and “raw MIME” (…/inbound_mime/)
formats; the URL tells Mailgun which you want. Because Anymail handles parsing and normalizing the data,
both are equally easy to use. The raw MIME option will give the most accurate representation of any
received email (including complex forms like multi-message mailing list digests). The fully-parsed option
may use less memory while processing messages with many large attachments.

If you want to use Anymail’s normalized spam_detected and
spam_score attributes, you’ll need to set your Mailgun
domain’s inbound spam filter to “Deliver spam, but add X-Mailgun-SFlag and X-Mailgun-SScore headers”
(in the Mailgun domains dashboard [https://app.mailgun.com/app/domains]).

Mailjet

Anymail integrates with the Mailjet [https://www.mailjet.com/] email service, using their transactional Send API [https://dev.mailjet.com/guides/#choose-sending-method] (v3).

New in version 0.11.

Note

Mailjet has released a newer v3.1 Send API [https://dev.mailjet.com/guides/#send-api-v3-1-beta], but due to mismatches between its
documentation and actual behavior, Anymail has been unable to switch to it.
Anymail’s maintainers have reported the problems to Mailjet, and if and when they
are resolved, Anymail will switch to the v3.1 API. This change should be largely
transparent to your code, unless you are using Anymail’s
esp_extra feature to set API-specific options.

Settings

EMAIL_BACKEND

To use Anymail’s Mailjet backend, set:

EMAIL_BACKEND = "anymail.backends.mailjet.EmailBackend"

in your settings.py.

MAILJET_API_KEY and MAILJET_SECRET_KEY

Your Mailjet API key and secret key, from your Mailjet account REST API settings
under API Key Management [https://app.mailjet.com/account/api_keys]. (Mailjet’s documentation also sometimes uses
“API private key” to mean the same thing as “secret key.”)

ANYMAIL = {
 ...
 "MAILJET_API_KEY": "<your API key>",
 "MAILJET_SECRET_KEY": "<your API secret>",
}

You can use either a master or sub-account API key.

Anymail will also look for MAILJET_API_KEY and MAILJET_SECRET_KEY at the
root of the settings file if neither ANYMAIL["MAILJET_API_KEY"]
nor ANYMAIL_MAILJET_API_KEY is set.

MAILJET_API_URL

The base url for calling the Mailjet API.

The default is MAILJET_API_URL = "https://api.mailjet.com/v3"
(It’s unlikely you would need to change this. This setting cannot be used
to opt into a newer API version; the parameters are not backwards compatible.)

esp_extra support

To use Mailjet features not directly supported by Anymail, you can
set a message’s esp_extra to
a dict [https://docs.python.org/3.6/library/stdtypes.html#dict] of Mailjet’s Send API json properties [https://dev.mailjet.com/guides/#send-api-json-properties].
Your esp_extra dict will be merged into the
parameters Anymail has constructed for the send, with esp_extra
having precedence in conflicts.

Note

Any esp_extra settings will need to be updated when Anymail changes
to use Mailjet’s upcoming v3.1 API. (See note above.)

Example:

message.esp_extra = {
 # Mailjet v3.0 Send API options:
 "Mj-prio": 3, # Use Mailjet critically-high priority queue
 "Mj-CustomID": my_event_tracking_id,
}

(You can also set "esp_extra" in Anymail’s
global send defaults to apply it to all
messages.)

Limitations and quirks

	Single tag

	Anymail uses Mailjet’s campaign [https://dev.mailjet.com/guides/#grouping-into-a-campaign] option for tags, and Mailjet allows
only a single campaign per message. If your message has two or more
tags, you’ll get an
AnymailUnsupportedFeature error—or
if you’ve enabled ANYMAIL_IGNORE_UNSUPPORTED_FEATURES,
Anymail will use only the first tag.

	No delayed sending

	Mailjet does not support send_at.

	Envelope sender may require approval

	Anymail passes envelope_sender to
Mailjet, but this may result in an API error if you have not received
special approval from Mailjet support to use custom senders.

	Commas in recipient names

	Mailjet’s v3 API does not properly handle commas in recipient display-names.
(Tested July, 2017, and confirmed with Mailjet API support.)

If your message would be affected, Anymail attempts to work around
the problem by switching to MIME encoded-word [https://en.wikipedia.org/wiki/MIME#Encoded-Word] syntax where needed.

Most modern email clients should support this syntax, but if you run
into issues, you might want to strip commas from all
recipient names (in to, cc, and bcc) before sending.

(This should be resolved in a future release when
Anymail switches to Mailjet’s upcoming v3.1 API.)

Changed in version 6.0: Earlier versions of Anymail were unable to mix cc or bcc fields
and merge_data in the same Mailjet message.
This limitation was removed in Anymail 6.0.

Batch sending/merge and ESP templates

Mailjet offers both ESP stored templates
and batch sending with per-recipient merge data.

You can use a Mailjet stored transactional template by setting a message’s
template_id to the
template’s numeric template ID. (Not the template’s name. To get the
numeric template id, click on the name in your Mailjet transactional templates [https://app.mailjet.com/templates/transactional],
then look for “Template ID” above the preview that appears.)

Supply the template merge data values with Anymail’s
normalized merge_data
and merge_global_data
message attributes.

message = EmailMessage(
 ...
 # omit subject and body (or set to None) to use template content
 to=["alice@example.com", "Bob <bob@example.com>"]
)
message.template_id = "176375" # Mailjet numeric template id
message.from_email = None # Use the From address stored with the template
message.merge_data = {
 'alice@example.com': {'name': "Alice", 'order_no': "12345"},
 'bob@example.com': {'name': "Bob", 'order_no': "54321"},
}
message.merge_global_data = {
 'ship_date': "May 15",
}

Any from_email in your EmailMessage will override the template’s default sender
address. To use the template’s sender, you must explicitly set from_email = None
after creating the EmailMessage, as shown above. (If you omit this, Django’s default
DEFAULT_FROM_EMAIL [https://docs.djangoproject.com/en/stable/ref/settings/#std:setting-DEFAULT_FROM_EMAIL] will be used.)

Instead of creating a stored template at Mailjet, you can also refer to merge fields
directly in an EmailMessage’s body—the message itself is used as an on-the-fly template:

message = EmailMessage(
 from_email="orders@example.com",
 to=["alice@example.com", "Bob <bob@example.com>"],
 subject="Your order has shipped", # subject doesn't support on-the-fly merge fields
 # Use [[var:FIELD]] to for on-the-fly merge into plaintext or html body:
 body="Dear [[var:name]]: Your order [[var:order_no]] shipped on [[var:ship_date]]."
)
message.merge_data = {
 'alice@example.com': {'name': "Alice", 'order_no': "12345"},
 'bob@example.com': {'name': "Bob", 'order_no': "54321"},
}
message.merge_global_data = {
 'ship_date': "May 15",
}

(Note that on-the-fly templates use square brackets to indicate “personalization” [https://dev.mailjet.com/guides/#personalisation] merge fields,
rather than the curly brackets used with stored templates in Mailjet’s template language.)

See Mailjet’s template documentation [https://www.mailjet.com/docs/template_builder_transactional] and template language [https://dev.mailjet.com/template-language/] docs
for more information.

Status tracking webhooks

If you are using Anymail’s normalized status tracking, enter
the url in your Mailjet account REST API settings under Event tracking (triggers) [https://app.mailjet.com/account/triggers]:

https://random:random@yoursite.example.com/anymail/mailjet/tracking/

	random:random is an ANYMAIL_WEBHOOK_SECRET shared secret

	yoursite.example.com is your Django site

Be sure to enter the URL in the Mailjet settings for all the event types you want to receive.
It’s also recommended to select the “group events” checkbox for each trigger, to minimize your
server load.

Mailjet will report these Anymail event_types:
rejected, bounced, deferred, delivered, opened, clicked, complained, unsubscribed.

The event’s esp_event field will be
a dict [https://docs.python.org/3.6/library/stdtypes.html#dict] of Mailjet event [https://dev.mailjet.com/guides/#events] fields, for a single event. (Although Mailjet calls
webhooks with batches of events, Anymail will invoke your signal receiver separately
for each event in the batch.)

Inbound webhook

If you want to receive email from Mailjet through Anymail’s normalized inbound
handling, follow Mailjet’s Parse API inbound emails [https://dev.mailjet.com/guides/#parse-api-inbound-emails] guide to set up Anymail’s inbound webhook.

The parseroute Url parameter will be:

https://random:random@yoursite.example.com/anymail/mailjet/inbound/

	random:random is an ANYMAIL_WEBHOOK_SECRET shared secret

	yoursite.example.com is your Django site

Once you’ve done Mailjet’s “basic setup” to configure the Parse API webhook, you can skip
ahead to the “use your own domain” section of their guide. (Anymail normalizes the inbound
event for you, so you won’t need to worry about Mailjet’s event and attachment formats.)

Mandrill

Anymail integrates with the Mandrill [http://mandrill.com/]
transactional email service from MailChimp.

Note

Limited Support for Mandrill

Anymail is developed to the public Mandrill documentation, but unlike
other supported ESPs, we are unable to test or debug against the live
Mandrill APIs. (MailChimp discourages use of Mandrill by “developers,”
and doesn’t offer testing access for packages like Anymail.)

As a result, Anymail bugs with Mandrill will generally be discovered
by Anymail’s users, in production; Anymail’s maintainers often won’t
be able to answer Mandrill-specific questions; and fixes and improvements
for Mandrill will tend to lag other ESPs.

If you are integrating only Mandrill, and not considering one of Anymail’s
other ESPs, you might prefer using MailChimp’s official
mandrill [https://pypi.org/project/mandrill/] python package instead of Anymail.

Settings

EMAIL_BACKEND

To use Anymail’s Mandrill backend, set:

EMAIL_BACKEND = "anymail.backends.mandrill.EmailBackend"

in your settings.py.

MANDRILL_API_KEY

Required. Your Mandrill API key:

ANYMAIL = {
 ...
 "MANDRILL_API_KEY": "<your API key>",
}

Anymail will also look for MANDRILL_API_KEY at the
root of the settings file if neither ANYMAIL["MANDRILL_API_KEY"]
nor ANYMAIL_MANDRILL_API_KEY is set.

MANDRILL_WEBHOOK_KEY

Required if using Anymail’s webhooks. The “webhook authentication key”
issued by Mandrill.
More info [https://mandrill.zendesk.com/hc/en-us/articles/205583257]
in Mandrill’s KB.

MANDRILL_WEBHOOK_URL

Required only if using Anymail’s webhooks and the hostname your
Django server sees is different from the public webhook URL
you provided Mandrill. (E.g., if you have a proxy in front
of your Django server that forwards
“https://yoursite.example.com” to “http://localhost:8000/”).

If you are seeing AnymailWebhookValidationFailure errors
from your webhooks, set this to the exact webhook URL you entered
in Mandrill’s settings.

MANDRILL_API_URL

The base url for calling the Mandrill API. The default is
MANDRILL_API_URL = "https://mandrillapp.com/api/1.0",
which is the secure, production version of Mandrill’s 1.0 API.

(It’s unlikely you would need to change this.)

esp_extra support

To use Mandrill features not directly supported by Anymail, you can
set a message’s esp_extra to
a dict [https://docs.python.org/3.6/library/stdtypes.html#dict] of parameters to merge into Mandrill’s messages/send API [https://mandrillapp.com/api/docs/messages.JSON.html#method=send] call.
Note that a few parameters go at the top level, but Mandrill expects
most options within a 'message' sub-dict—be sure to check their
API docs:

message.esp_extra = {
 # Mandrill expects 'ip_pool' at top level...
 'ip_pool': 'Bulk Pool',
 # ... but 'subaccount' must be within a 'message' dict:
 'message': {
 'subaccount': 'Marketing Dept.'
 }
}

Anymail has special handling that lets you specify Mandrill’s
'recipient_metadata' as a simple, pythonic dict [https://docs.python.org/3.6/library/stdtypes.html#dict] (similar in form
to Anymail’s merge_data),
rather than Mandrill’s more complex list of rcpt/values dicts.
You can use whichever style you prefer (but either way,
recipient_metadata must be in esp_extra['message']).

Similary, Anymail allows Mandrill’s 'template_content' in esp_extra
(top level) either as a pythonic dict [https://docs.python.org/3.6/library/stdtypes.html#dict] (similar to Anymail’s
merge_global_data) or
as Mandrill’s more complex list of name/content dicts.

Limitations and quirks

	Envelope sender uses only domain

	Anymail’s envelope_sender is used to
populate Mandrill’s 'return_path_domain'—but only the domain portion.
(Mandrill always generates its own encoded mailbox for the envelope sender.)

Batch sending/merge and ESP templates

Mandrill offers both ESP stored templates
and batch sending with per-recipient merge data.

You can use a Mandrill stored template by setting a message’s
template_id to the
template’s name. Alternatively, you can refer to merge fields
directly in an EmailMessage’s subject and body—the message itself
is used as an on-the-fly template.

In either case, supply the merge data values with Anymail’s
normalized merge_data
and merge_global_data
message attributes.

This example defines the template inline, using Mandrill's
default MailChimp merge *|field|* syntax.
You could use a stored template, instead, with:
message.template_id = "template name"
message = EmailMessage(
 ...
 subject="Your order *|order_no|* has shipped",
 body="""Hi *|name|*,
 We shipped your order *|order_no|*
 on *|ship_date|*.""",
 to=["alice@example.com", "Bob <bob@example.com>"]
)
(you'd probably also set a similar html body with merge fields)
message.merge_data = {
 'alice@example.com': {'name': "Alice", 'order_no': "12345"},
 'bob@example.com': {'name': "Bob", 'order_no': "54321"},
}
message.merge_global_data = {
 'ship_date': "May 15",
}

When you supply per-recipient merge_data,
Anymail automatically forces Mandrill’s preserve_recipients option to false,
so that each person in the message’s “to” list sees only their own email address.

To use the subject or from address defined with a Mandrill template, set the message’s
subject or from_email attribute to None [https://docs.python.org/3.6/library/constants.html#None].

See the Mandrill’s template docs [https://mandrill.zendesk.com/hc/en-us/articles/205582507-Getting-Started-with-Templates] for more information.

Status tracking and inbound webhooks

If you are using Anymail’s normalized status tracking
and/or inbound handling, setting up Anymail’s webhook URL
requires deploying your Django project twice:

	First, follow the instructions to
configure Anymail’s webhooks. You must deploy
before adding the webhook URL to Mandrill, because Mandrill will attempt
to verify the URL against your production server.

Once you’ve deployed, then set Anymail’s webhook URL in Mandrill, following their
instructions for tracking event webhooks [https://mandrill.zendesk.com/hc/en-us/articles/205583217-Introduction-to-Webhooks] (be sure to check the boxes for the
events you want to receive) and/or inbound route webhooks [https://mandrill.zendesk.com/hc/en-us/articles/205583197-Inbound-Email-Processing-Overview].
In either case, the webhook url is:

https://random:random@yoursite.example.com/anymail/mandrill/

	random:random is an ANYMAIL_WEBHOOK_SECRET shared secret

	yoursite.example.com is your Django site

	(Note: Unlike Anymail’s other supported ESPs, the Mandrill webhook uses this
single url for both tracking and inbound events.)

	Mandrill will provide you a “webhook authentication key” once it verifies the URL
is working. Add this to your Django project’s Anymail settings under
MANDRILL_WEBHOOK_KEY.
(You may also need to set MANDRILL_WEBHOOK_URL
depending on your server config.) Then deploy your project again.

Mandrill implements webhook signing on the entire event payload, and Anymail verifies this
signature. Until the correct webhook key is set, Anymail will raise
an exception for any webhook calls from Mandrill (other than the initial validation request).

Mandrill’s webhook signature also covers the exact posting URL. Anymail can usually
figure out the correct (public) URL where Mandrill called your webhook. But if you’re
getting an AnymailWebhookValidationFailure with a different URL than you
provided Mandrill, you may need to examine your Django SECURE_PROXY_SSL_HEADER [https://docs.djangoproject.com/en/stable/ref/settings/#std:setting-SECURE_PROXY_SSL_HEADER],
USE_X_FORWARDED_HOST [https://docs.djangoproject.com/en/stable/ref/settings/#std:setting-USE_X_FORWARDED_HOST], and/or USE_X_FORWARDED_PORT [https://docs.djangoproject.com/en/stable/ref/settings/#std:setting-USE_X_FORWARDED_PORT] settings. If all
else fails, you can set Anymail’s MANDRILL_WEBHOOK_URL
to the same public webhook URL you gave Mandrill.

Mandrill will report these Anymail event_types:
sent, rejected, deferred, bounced, opened, clicked, complained, unsubscribed, inbound. Mandrill does
not support delivered events. Mandrill “whitelist” and “blacklist” change events will show up
as Anymail’s unknown event_type.

The event’s esp_event field will be
a dict [https://docs.python.org/3.6/library/stdtypes.html#dict] of Mandrill event fields, for a single event. (Although Mandrill calls
webhooks with batches of events, Anymail will invoke your signal receiver separately
for each event in the batch.)

Changed in version 1.3: Earlier Anymail releases used .../anymail/mandrill/tracking/ as the tracking
webhook url. With the addition of inbound handling, Anymail has dropped “tracking”
from the recommended url for new installations. But the older url is still
supported. Existing installations can continue to use it—and can even install it
on a Mandrill inbound route to avoid issuing a new webhook key.

Migrating from Djrill

Anymail has its origins as a fork of the Djrill [https://github.com/brack3t/Djrill]
package, which supported only Mandrill. If you are migrating
from Djrill to Anymail – e.g., because you are thinking
of switching ESPs – you’ll need to make a few changes
to your code.

Changes to settings

	MANDRILL_API_KEY

	Will still work, but consider moving it into the ANYMAIL
settings dict, or changing it to ANYMAIL_MANDRILL_API_KEY.

	MANDRILL_SETTINGS

	Use ANYMAIL_SEND_DEFAULTS and/or ANYMAIL_MANDRILL_SEND_DEFAULTS
(see Global send defaults).

There is one slight behavioral difference between ANYMAIL_SEND_DEFAULTS
and Djrill’s MANDRILL_SETTINGS: in Djrill, setting tags or
merge_vars on a message would completely override any global
settings defaults. In Anymail, those message attributes are merged with
the values from ANYMAIL_SEND_DEFAULTS.

	MANDRILL_SUBACCOUNT

	Set esp_extra
globally in ANYMAIL_SEND_DEFAULTS:

ANYMAIL = {
 ...
 "MANDRILL_SEND_DEFAULTS": {
 "esp_extra": {
 "message": {
 "subaccount": "<your subaccount>"
 }
 }
 }
}

	MANDRILL_IGNORE_RECIPIENT_STATUS

	Renamed to ANYMAIL_IGNORE_RECIPIENT_STATUS
(or just IGNORE_RECIPIENT_STATUS in the ANYMAIL
settings dict).

	DJRILL_WEBHOOK_SECRET and DJRILL_WEBHOOK_SECRET_NAME

	Replaced with HTTP basic auth. See Securing webhooks.

	DJRILL_WEBHOOK_SIGNATURE_KEY

	Use ANYMAIL_MANDRILL_WEBHOOK_KEY instead.

	DJRILL_WEBHOOK_URL

	Often no longer required: Anymail can normally use Django’s
HttpRequest.build_absolute_uri [https://docs.djangoproject.com/en/stable/ref/request-response/#django.http.HttpRequest.build_absolute_uri]
to figure out the complete webhook url that Mandrill called.

If you are experiencing webhook authorization errors, the best solution is to adjust
your Django SECURE_PROXY_SSL_HEADER [https://docs.djangoproject.com/en/stable/ref/settings/#std:setting-SECURE_PROXY_SSL_HEADER], USE_X_FORWARDED_HOST [https://docs.djangoproject.com/en/stable/ref/settings/#std:setting-USE_X_FORWARDED_HOST], and/or
USE_X_FORWARDED_PORT [https://docs.djangoproject.com/en/stable/ref/settings/#std:setting-USE_X_FORWARDED_PORT] settings to work with your proxy server.
If that’s not possible, you can set ANYMAIL_MANDRILL_WEBHOOK_URL to explicitly
declare the webhook url.

Changes to EmailMessage attributes

	message.send_at

	If you are using an aware datetime for
send_at,
it will keep working unchanged with Anymail.

If you are using a date (without a time), or a naive datetime,
be aware that these now default to Django’s current_timezone,
rather than UTC as in Djrill.

(As with Djrill, it’s best to use an aware datetime
that says exactly when you want the message sent.)

	message.mandrill_response

	Anymail normalizes ESP responses, so you don’t have to be familiar
with the format of Mandrill’s JSON.
See anymail_status.

The raw ESP response is attached to a sent message as
anymail_status.esp_response, so the direct replacement
for message.mandrill_response is:

mandrill_response = message.anymail_status.esp_response.json()

	message.template_name

	Anymail renames this to template_id.

	message.merge_vars and message.global_merge_vars

	Anymail renames these to merge_data
and merge_global_data, respectively.

	message.use_template_from and message.use_template_subject

	With Anymail, set message.from_email = None or message.subject = None
to use the values from the stored template.

	message.return_path_domain

	With Anymail, set envelope_sender
instead. You’ll need to pass a valid email address (not just a domain),
but Anymail will use only the domain, and will ignore anything before the @.

Changed in version 2.0.

	Other Mandrill-specific attributes

	Djrill allowed nearly all Mandrill API parameters to be set
as attributes directly on an EmailMessage. With Anymail, you
should instead set these in the message’s
esp_extra dict as described above.

Although the Djrill style attributes are still supported (for now),
Anymail will issue a DeprecationWarning [https://docs.python.org/3.6/library/exceptions.html#DeprecationWarning] if you try to use them.
These warnings are visible during tests (with Django’s default test
runner), and will explain how to update your code.

You can also use the following git grep expression to find potential
problems:

git grep -w \
 -e 'async' -e 'auto_html' -e 'auto_text' -e 'from_name' -e 'global_merge_vars' \
 -e 'google_analytics_campaign' -e 'google_analytics_domains' -e 'important' \
 -e 'inline_css' -e 'ip_pool' -e 'merge_language' -e 'merge_vars' \
 -e 'preserve_recipients' -e 'recipient_metadata' -e 'return_path_domain' \
 -e 'signing_domain' -e 'subaccount' -e 'template_content' -e 'template_name' \
 -e 'tracking_domain' -e 'url_strip_qs' -e 'use_template_from' -e 'use_template_subject' \
 -e 'view_content_link'

	Inline images

	Djrill (incorrectly) used the presence of a Content-ID
header to decide whether to treat an image as inline. Anymail
looks for Content-Disposition: inline.

If you were constructing MIMEImage inline image attachments
for your Djrill messages, in addition to setting the Content-ID,
you should also add:

image.add_header('Content-Disposition', 'inline')

Or better yet, use Anymail’s new Inline images
helper functions to attach your inline images.

Changes to webhooks

Anymail uses HTTP basic auth as a shared secret for validating webhook
calls, rather than Djrill’s “secret” query parameter. See
Securing webhooks. (A slight advantage of basic auth over query
parameters is that most logging and analytics systems are aware of the
need to keep auth secret.)

Anymail replaces djrill.signals.webhook_event with
anymail.signals.tracking for delivery tracking events,
and anymail.signals.inbound for inbound events.
Anymail parses and normalizes
the event data passed to the signal receiver: see Tracking sent mail status
and Receiving mail.

The equivalent of Djrill’s data parameter is available
to your signal receiver as
event.esp_event,
and for most events, the equivalent of Djrill’s event_type parameter
is event.esp_event['event']. But consider working with Anymail’s
normalized AnymailTrackingEvent and
AnymailInboundEvent instead for easy portability
to other ESPs.

Postmark

Anymail integrates with the Postmark [https://postmarkapp.com/] transactional email service,
using their HTTP email API [https://postmarkapp.com/developer/api/email-api].

Settings

EMAIL_BACKEND

To use Anymail’s Postmark backend, set:

EMAIL_BACKEND = "anymail.backends.postmark.EmailBackend"

in your settings.py.

POSTMARK_SERVER_TOKEN

Required. A Postmark server token.

ANYMAIL = {
 ...
 "POSTMARK_SERVER_TOKEN": "<your server token>",
}

Anymail will also look for POSTMARK_SERVER_TOKEN at the
root of the settings file if neither ANYMAIL["POSTMARK_SERVER_TOKEN"]
nor ANYMAIL_POSTMARK_SERVER_TOKEN is set.

You can override the server token for an individual message in
its esp_extra.

POSTMARK_API_URL

The base url for calling the Postmark API.

The default is POSTMARK_API_URL = "https://api.postmarkapp.com/"
(It’s unlikely you would need to change this.)

esp_extra support

To use Postmark features not directly supported by Anymail, you can
set a message’s esp_extra to
a dict [https://docs.python.org/3.6/library/stdtypes.html#dict] that will be merged into the json sent to Postmark’s
email API [https://postmarkapp.com/developer/api/email-api].

Example:

message.esp_extra = {
 'HypotheticalFuturePostmarkParam': '2022', # merged into send params
 'server_token': '<API server token for just this message>',
}

(You can also set "esp_extra" in Anymail’s
global send defaults to apply it to all
messages.)

Limitations and quirks

Postmark does not support a few tracking and reporting additions offered by other ESPs.

Anymail normally raises an AnymailUnsupportedFeature
error when you try to send a message using features that Postmark doesn’t support
You can tell Anymail to suppress these errors and send the messages anyway –
see Unsupported features.

	Single tag

	Postmark allows a maximum of one tag per message. If your message has two or more
tags, you’ll get an
AnymailUnsupportedFeature error—or
if you’ve enabled ANYMAIL_IGNORE_UNSUPPORTED_FEATURES,
Anymail will use only the first tag.

	No delayed sending

	Postmark does not support send_at.

	Click-tracking

	Postmark supports several link-tracking options [https://postmarkapp.com/developer/user-guide/tracking-links#enabling-link-tracking]. Anymail treats
track_clicks as Postmark’s
“HtmlAndText” option when True.

If you would prefer Postmark’s “HtmlOnly” or “TextOnly” link-tracking, you could
either set that as a Postmark server-level default (and use message.track_clicks = False
to disable tracking for specific messages), or use something like
message.esp_extra = {'TrackLinks': "HtmlOnly"} to specify a particular option.

	No envelope sender overrides

	Postmark does not support overriding envelope_sender
on individual messages. (You can configure custom return paths for each sending domain in
the Postmark control panel.)

Batch sending/merge and ESP templates

Postmark offers both ESP stored templates
and batch sending with per-recipient merge data.

Changed in version 4.2: Added Postmark merge_data and batch sending
support. (Earlier Anymail releases only supported
merge_global_data with Postmark.)

To use a Postmark template, set the message’s
template_id to either the numeric Postmark
“TemplateID” or its string “TemplateAlias” (which is not the template’s name).
You can find a template’s numeric id near the top right in Postmark’s template editor,
and set the alias near the top right above the name.

Changed in version 5.0: Earlier Anymail releases only allowed numeric template IDs.

Supply the Postmark “TemplateModel” variables using Anymail’s normalized
merge_data and
merge_global_data message attributes:

message = EmailMessage(
 # (subject and body come from the template, so don't include those)
 to=["alice@example.com", "Bob <bob@example.com>"]
)
message.template_id = 80801 # Postmark template id or alias
message.merge_data = {
 'alice@example.com': {'name': "Alice", 'order_no': "12345"},
 'bob@example.com': {'name': "Bob", 'order_no': "54321"},
}
message.merge_global_data = {
 'ship_date': "May 15",
}

Postmark does not allow overriding the message’s subject or body with a template.
(You can customize the subject by including variables in the template’s subject.)

When you supply per-recipient merge_data,
Anymail automatically switches to Postmark’s batch send API, so that
each “to” recipient sees only their own email address. (Any cc’s or bcc’s will be
duplicated for every to-recipient.)

If you want to use batch sending with a regular message (without a template), set
merge data to an empty dict: message.merge_data = {}.

See this Postmark blog post on templates [https://postmarkapp.com/blog/special-delivery-postmark-templates] for more information.

Status tracking webhooks

If you are using Anymail’s normalized status tracking, set up
a webhook in your Postmark account settings [https://account.postmarkapp.com/servers], under Servers > your server name >
Settings > Webhooks. The webhook URL is:

https://random:random@yoursite.example.com/anymail/postmark/tracking/

	random:random is an ANYMAIL_WEBHOOK_SECRET shared secret

	yoursite.example.com is your Django site

Choose all the event types you want to receive. Anymail doesn’t care about the “include
messsage content” and “post only on first open” options; whether to use them is your choice.

If you use multiple Postmark servers, you’ll need to repeat entering the webhook
settings for each of them.

Postmark will report these Anymail event_types:
rejected, failed, bounced, deferred, delivered, autoresponded, opened, clicked, complained,
unsubscribed, subscribed. (Postmark does not support sent–what it calls “processed”–events
through webhooks.)

The event’s esp_event field will be
a dict [https://docs.python.org/3.6/library/stdtypes.html#dict] of Postmark delivery [https://postmarkapp.com/developer/webhooks/delivery-webhook],
bounce [https://postmarkapp.com/developer/webhooks/bounce-webhook],
spam-complaint [https://postmarkapp.com/developer/webhooks/spam-complaint-webhook],
open-tracking [https://postmarkapp.com/developer/webhooks/open-tracking-webhook], or
click [https://postmarkapp.com/developer/webhooks/click-webhook] data.

Inbound webhook

If you want to receive email from Postmark through Anymail’s normalized inbound
handling, follow Postmark’s Inbound Processing [https://postmarkapp.com/developer/user-guide/inbound] guide to configure
an inbound server pointing to Anymail’s inbound webhook.

The InboundHookUrl setting will be:

https://random:random@yoursite.example.com/anymail/postmark/inbound/

	random:random is an ANYMAIL_WEBHOOK_SECRET shared secret

	yoursite.example.com is your Django site

Anymail handles the “parse an email” part of Postmark’s instructions for you, but you’ll
likely want to work through the other sections to set up a custom inbound domain, and
perhaps configure inbound spam blocking.

SendGrid

Anymail integrates with the SendGrid [https://sendgrid.com/] email service, using their Web API v3 [https://sendgrid.com/docs/API_Reference/Web_API_v3/Mail/index.html].

Important

Troubleshooting:
If your SendGrid messages aren’t being delivered as expected, be sure to look for
“drop” events in your SendGrid activity feed [https://app.sendgrid.com/email_activity?events=drops].

SendGrid detects certain types of errors only after the send API call appears
to succeed, and reports these errors as drop events.

Settings

EMAIL_BACKEND

To use Anymail’s SendGrid backend, set:

EMAIL_BACKEND = "anymail.backends.sendgrid.EmailBackend"

in your settings.py.

SENDGRID_API_KEY

A SendGrid API key with “Mail Send” permission.
(Manage API keys in your SendGrid API key settings [https://app.sendgrid.com/settings/api_keys].)
Required.

ANYMAIL = {
 ...
 "SENDGRID_API_KEY": "<your API key>",
}

Anymail will also look for SENDGRID_API_KEY at the
root of the settings file if neither ANYMAIL["SENDGRID_API_KEY"]
nor ANYMAIL_SENDGRID_API_KEY is set.

SENDGRID_GENERATE_MESSAGE_ID

Whether Anymail should generate a UUID for each message sent through SendGrid,
to facilitate status tracking. The UUID is attached to the message as a
SendGrid custom arg named “anymail_id” and made available as
anymail_status.message_id
on the sent message.

Default True. You can set to False to disable this behavior, in which
case sent messages will have a message_id of None.
See Message-ID quirks below.

SENDGRID_MERGE_FIELD_FORMAT

If you use merge data with SendGrid’s legacy transactional templates,
set this to a str.format() [https://docs.python.org/3.6/library/stdtypes.html#str.format] formatting string that indicates how merge fields are
delimited in your legacy templates. For example, if your templates use the -field-
hyphen delimiters suggested in some SendGrid docs, you would set:

ANYMAIL = {
 ...
 "SENDGRID_MERGE_FIELD_FORMAT": "-{}-",
}

The placeholder {} will become the merge field name. If you need to include
a literal brace character, double it up. (For example, Handlebars-style
{{field}} delimiters would take the format string "{{{{{}}}}}".)

The default None [https://docs.python.org/3.6/library/constants.html#None] requires you include the delimiters directly in your
merge_data keys.
You can also override this setting for individual messages.
See the notes on SendGrid templates and merge
below.

This setting is not used (or necessary) with SendGrid’s newer dynamic transactional
templates, which always use Handlebars syntax.

SENDGRID_API_URL

The base url for calling the SendGrid API.

The default is SENDGRID_API_URL = "https://api.sendgrid.com/v3/"
(It’s unlikely you would need to change this.)

esp_extra support

To use SendGrid features not directly supported by Anymail, you can
set a message’s esp_extra to
a dict [https://docs.python.org/3.6/library/stdtypes.html#dict] of parameters for SendGrid’s v3 Mail Send API [https://sendgrid.com/docs/API_Reference/Web_API_v3/Mail/index.html#-Request-Body-Parameters].
Your esp_extra dict will be deeply merged into the
parameters Anymail has constructed for the send, with esp_extra
having precedence in conflicts.

Anymail has special handling for esp_extra["personalizations"]. If that value
is a dict [https://docs.python.org/3.6/library/stdtypes.html#dict], Anymail will merge that personalizations dict into the personalizations
for each message recipient. (If you pass a list [https://docs.python.org/3.6/library/stdtypes.html#list], that will override the
personalizations Anymail normally constructs from the message, and you will need to
specify each recipient in the personalizations list yourself.)

Example:

message.open_tracking = True
message.esp_extra = {
 "asm": { # SendGrid subscription management
 "group_id": 1,
 "groups_to_display": [1, 2, 3],
 },
 "tracking_settings": {
 "open_tracking": {
 # Anymail will automatically set `"enable": True` here,
 # based on message.open_tracking.
 "substitution_tag": "%%OPEN_TRACKING_PIXEL%%",
 },
 },
 # Because "personalizations" is a dict, Anymail will merge "future_feature"
 # into the SendGrid personalizations array for each message recipient
 "personalizations": {
 "future_feature": {"future": "data"},
 },
}

(You can also set "esp_extra" in Anymail’s
global send defaults to apply it to all
messages.)

Limitations and quirks

	Message-ID

	SendGrid does not return any sort of unique id from its send API call.
Knowing a sent message’s ID can be important for later queries about
the message’s status.

To work around this, Anymail generates a UUID for each outgoing message,
provides it to SendGrid as a custom arg named “anymail_id” and makes it
available as the message’s
anymail_status.message_id
attribute after sending. The same UUID will be passed to Anymail’s
tracking webhooks as
event.message_id.

To disable attaching tracking UUIDs to sent messages, set
SENDGRID_GENERATE_MESSAGE_ID
to False in your Anymail settings.

Changed in version 6.0: In batch sends, Anymail generates a distinct anymail_id for each “to”
recipient. (Previously, a single id was used for all batch recipients.) Check
anymail_status.recipients[to_email].message_id
for individual batch-send tracking ids.

Changed in version 3.0: Previously, Anymail generated a custom Message-ID
header for each sent message. But SendGrid’s “smtp-id” event field does
not reliably reflect this header, which complicates status tracking.
(For compatibility with messages sent in earlier versions, Anymail’s
webhook message_id will fall back to “smtp-id” when “anymail_id”
isn’t present.)

	Single Reply-To

	SendGrid’s v3 API only supports a single Reply-To address.

If your message has multiple reply addresses, you’ll get an
AnymailUnsupportedFeature error—or
if you’ve enabled ANYMAIL_IGNORE_UNSUPPORTED_FEATURES,
Anymail will use only the first one.

	Invalid Addresses

	SendGrid will accept and send just about anything as
a message’s from_email. (And email protocols are
actually OK with that.)

(Tested March, 2016)

	No envelope sender overrides

	SendGrid does not support overriding envelope_sender
on individual messages.

Batch sending/merge and ESP templates

SendGrid offers both ESP stored templates
and batch sending with per-recipient merge data.

SendGrid has two types of stored templates for transactional email:

	Dynamic transactional templates, which were introduced in July, 2018,
use Handlebars template syntax and allow complex logic to be coded in
the template itself.

	Legacy transactional templates, which allow only simple key-value substitution
and don’t specify a particular template syntax.

[Legacy templates were originally just called “transactional templates,” and many older
references still use this terminology. But confusingly, SendGrid’s dashboard and some
recent articles now use “transactional templates” to mean the newer, dynamic templates.]

Changed in version 4.1: Added support for SendGrid dynamic transactional templates. (Earlier Anymail
releases work only with SendGrid’s legacy transactional templates.)

You can use either type of SendGrid stored template by setting a message’s
template_id to the template’s unique id
(not its name). Supply the merge data values with Anymail’s normalized
merge_data and
merge_global_data message attributes.

message = EmailMessage(
 ...
 # omit subject and body (or set to None) to use template content
 to=["alice@example.com", "Bob <bob@example.com>"]
)
message.template_id = "d-5a963add2ec84305813ff860db277d7a" # SendGrid dynamic id
message.merge_data = {
 'alice@example.com': {'name': "Alice", 'order_no': "12345"},
 'bob@example.com': {'name': "Bob", 'order_no': "54321"},
}
message.merge_global_data = {
 'ship_date': "May 15",
}

When you supply per-recipient merge_data,
Anymail automatically changes how it communicates the “to” list to SendGrid, so that
each recipient sees only their own email address. (Anymail creates a separate
“personalization” for each recipient in the “to” list; any cc’s or bcc’s will be
duplicated for every to-recipient.)

See the SendGrid’s transactional template overview [https://sendgrid.com/docs/ui/sending-email/create-and-edit-transactional-templates/] for more information.

Legacy transactional templates

With legacy transactional templates (only), SendGrid doesn’t have a pre-defined merge
field syntax, so you must tell Anymail how substitution fields are delimited in your
templates. There are three ways you can do this:

	Set 'merge_field_format' in the message’s
esp_extra to a python str.format() [https://docs.python.org/3.6/library/stdtypes.html#str.format]
string, as shown in the example below. (This applies only to that particular
EmailMessage.)

	Or set SENDGRID_MERGE_FIELD_FORMAT
in your Anymail settings. This is usually the best approach, and will apply to all
legacy template messages sent through SendGrid. (You can still use esp_extra to
override for individual messages.)

	Or include the field delimiters directly in all your
merge_data and
merge_global_data keys.
E.g.: {'-name-': "Alice", '-order_no-': "12345"}.
(This can be error-prone, and makes it difficult to transition to other ESPs or to
SendGrid’s dynamic templates.)

...
message.template_id = "5997fcf6-2b9f-484d-acd5-7e9a99f0dc1f" # SendGrid legacy id
message.merge_data = {
 'alice@example.com': {'name': "Alice", 'order_no': "12345"},
 'bob@example.com': {'name': "Bob", 'order_no': "54321"},
}
message.esp_extra = {
 # Tell Anymail this SendGrid legacy template uses "-field-" for merge fields.
 # (You could instead set SENDGRID_MERGE_FIELD_FORMAT in your ANYMAIL settings.)
 'merge_field_format': "-{}-"
}

SendGrid legacy templates allow you to mix your EmailMessage’s subject and body
with the template subject and body (by using <%subject%> and <%body%> in
your SendGrid template definition where you want the message-specific versions
to appear). If you don’t want to supply any additional subject or body content
from your Django app, set those EmailMessage attributes to empty strings or None [https://docs.python.org/3.6/library/constants.html#None].

On-the-fly templates

Rather than define a stored ESP template, you can refer to merge fields directly
in an EmailMessage’s subject and body, and SendGrid will treat this as an on-the-fly,
legacy-style template definition. (The on-the-fly template can’t contain any dynamic
template logic, and like any legacy template you must specify the merge field format
in either Anymail settings or esp_extra as described above.)

on-the-fly template using merge fields in subject and body:
message = EmailMessage(
 subject="Your order {{order_no}} has shipped",
 body="Dear {{name}}:\nWe've shipped order {{order_no}}.",
 to=["alice@example.com", "Bob <bob@example.com>"]
)
note: no template_id specified
message.merge_data = {
 'alice@example.com': {'name': "Alice", 'order_no': "12345"},
 'bob@example.com': {'name': "Bob", 'order_no': "54321"},
}
message.esp_extra = {
 # here's how to get Handlebars-style {{merge}} fields with Python's str.format:
 'merge_field_format': "{{{{{}}}}}" # "{{ {{ {} }} }}" without the spaces
}

Status tracking webhooks

If you are using Anymail’s normalized status tracking, enter
the url in your SendGrid mail settings [https://app.sendgrid.com/settings/mail_settings], under “Event Notification”:

https://random:random@yoursite.example.com/anymail/sendgrid/tracking/

	random:random is an ANYMAIL_WEBHOOK_SECRET shared secret

	yoursite.example.com is your Django site

Be sure to check the boxes in the SendGrid settings for the event types you want to receive.

SendGrid will report these Anymail event_types:
queued, rejected, bounced, deferred, delivered, opened, clicked, complained, unsubscribed,
subscribed.

The event’s esp_event field will be
a dict [https://docs.python.org/3.6/library/stdtypes.html#dict] of Sendgrid event [https://sendgrid.com/docs/API_Reference/Webhooks/event.html] fields, for a single event. (Although SendGrid calls
webhooks with batches of events, Anymail will invoke your signal receiver separately
for each event in the batch.)

Inbound webhook

If you want to receive email from SendGrid through Anymail’s normalized inbound
handling, follow SendGrid’s Inbound Parse Webhook [https://sendgrid.com/docs/Classroom/Basics/Inbound_Parse_Webhook/setting_up_the_inbound_parse_webhook.html] guide to set up
Anymail’s inbound webhook.

The Destination URL setting will be:

https://random:random@yoursite.example.com/anymail/sendgrid/inbound/

	random:random is an ANYMAIL_WEBHOOK_SECRET shared secret

	yoursite.example.com is your Django site

Be sure the URL has a trailing slash. (SendGrid’s inbound processing won’t follow Django’s
APPEND_SLASH [https://docs.djangoproject.com/en/stable/ref/settings/#std:setting-APPEND_SLASH] redirect.)

If you want to use Anymail’s normalized spam_detected and
spam_score attributes, be sure to enable the “Check
incoming emails for spam” checkbox.

You have a choice for SendGrid’s “POST the raw, full MIME message” checkbox. Anymail will handle
either option (and you can change it at any time). Enabling raw MIME will give the most accurate
representation of any received email (including complex forms like multi-message mailing list
digests). But disabling it may use less memory while processing messages with many large attachments.

SendinBlue

Anymail integrates with the SendinBlue [https://www.sendinblue.com/] email service, using their API v3 [https://developers.sendinblue.com/docs].
SendinBlue’s transactional API does not support some basic email features, such as
inline images. Be sure to review the limitations below.

Important

Troubleshooting:
If your SendinBlue messages aren’t being delivered as expected, be sure to look for
events in your SendinBlue logs [https://app-smtp.sendinblue.com/log].

SendinBlue detects certain types of errors only after the send API call reports
the message as “queued.” These errors appear in the logging dashboard.

Settings

EMAIL_BACKEND

To use Anymail’s SendinBlue backend, set:

EMAIL_BACKEND = "anymail.backends.sendinblue.EmailBackend"

in your settings.py.

SENDINBLUE_API_KEY

The API key can be retrieved from your SendinBlue SMTP & API settings [https://account.sendinblue.com/advanced/api].
Make sure the version column indicates “v3.” (v2 keys don’t work with
Anymail. If you don’t see a v3 key listed, use “Create a New API Key”.)
Required.

ANYMAIL = {
 ...
 "SENDINBLUE_API_KEY": "<your v3 API key>",
}

Anymail will also look for SENDINBLUE_API_KEY at the
root of the settings file if neither ANYMAIL["SENDINBLUE_API_KEY"]
nor ANYMAIL_SENDINBLUE_API_KEY is set.

SENDINBLUE_API_URL

The base url for calling the SendinBlue API.

The default is SENDINBLUE_API_URL = "https://api.sendinblue.com/v3/"
(It’s unlikely you would need to change this.)

esp_extra support

To use SendinBlue features not directly supported by Anymail, you can
set a message’s esp_extra to
a dict [https://docs.python.org/3.6/library/stdtypes.html#dict] that will be merged into the json sent to SendinBlue’s
smtp/email API [https://developers.sendinblue.com/v3.0/reference#sendtransacemail].

Example:

message.esp_extra = {
 'hypotheticalFutureSendinBlueParam': '2022', # merged into send params
}

(You can also set "esp_extra" in Anymail’s global send defaults
to apply it to all messages.)

Limitations and quirks

SendinBlue’s v3 API has several limitations. In most cases below,
Anymail will raise an AnymailUnsupportedFeature
error if you try to send a message using missing features. You can
override this by enabling the ANYMAIL_IGNORE_UNSUPPORTED_FEATURES
setting, and Anymail will try to limit the API request to features
SendinBlue can handle.

	HTML body required

	SendinBlue’s API returns an error if you attempt to send a message with
only a plain-text body. Be sure to include HTML
content for your messages.

(SendinBlue does allow HTML without a plain-text body. This is generally
not recommended, though, as some email systems treat HTML-only content as a
spam signal.)

	Inline images

	SendinBlue’s v3 API doesn’t support inline images, at all.
(Confirmed with SendinBlue support Feb 2018.)

If you are ignoring unsupported features, Anymail will try to send
inline images as ordinary image attachments.

	Attachment names must be filenames with recognized extensions

	SendinBlue determines attachment content type by assuming the attachment’s
name is a filename, and examining that filename’s extension (e.g., “.jpg”).

Trying to send an attachment without a name, or where the name does not end
in a supported filename extension, will result in a SendinBlue API error.
Anymail has no way to communicate an attachment’s desired content-type
to the SendinBlue API if the name is not set correctly.

	Additional template limitations

	If you are sending using a SendinBlue template, their API doesn’t allow display
names in recipient or reply-to emails, and doesn’t support overriding the template’s
from_email, subject, or body. See the templates
section below.

	Single Reply-To

	SendinBlue’s v3 API only supports a single Reply-To address.

If you are ignoring unsupported features and have multiple reply addresses,
Anymail will use only the first one.

	Single tag

	SendinBlue supports a single message tag, which can be used for filtering in their
dashboard statistics and logs panels, and is available in tracking webhooks.
Anymail will pass the first of a message’s tags
to SendinBlue, using their X-Mailin-tag email header.

Trying to send a message with more than one tag will result in an error unless you
are ignoring unsupported features.

	Metadata

	Anymail passes metadata to SendinBlue
as a JSON-encoded string using their X-Mailin-custom email header.
The metadata is available in tracking webhooks.

	No delayed sending

	SendinBlue does not support send_at.

	No click-tracking or open-tracking options

	SendinBlue does not provide a way to control open or click tracking for individual
messages. Anymail’s track_clicks and
track_opens settings are unsupported.

	No envelope sender overrides

	SendinBlue does not support overriding envelope_sender
on individual messages.

Batch sending/merge and ESP templates

SendinBlue supports ESP stored templates
populated with global merge data for all recipients, but does not
offer batch sending with per-recipient merge data.
Anymail’s merge_data
and merge_metadata
message attributes are not supported with the SendinBlue backend.

To use a SendinBlue template, set the message’s
template_id to the numeric
SendinBlue template ID, and supply substitution attributes using
the messages’s merge_global_data:

message = EmailMessage(
 subject=None, # required for SendinBlue templates
 body=None, # required for SendinBlue templates
 to=["alice@example.com"] # single recipient...
 # ...multiple to emails would all get the same message
 # (and would all see each other's emails in the "to" header)
)
message.from_email = None # required for SendinBlue templates
message.template_id = 3 # use this SendinBlue template
message.merge_global_data = {
 'name': "Alice",
 'order_no': "12345",
 'ship_date': "May 15",
}

Within your SendinBlue template body and subject, you can refer to merge
variables using %-delimited names, e.g., %order_no% or %ship_date%
from the example above.

Note that SendinBlue’s API does not permit overriding a template’s
subject, body, or from_email. You must set them to None [https://docs.python.org/3.6/library/constants.html#None] as shown above,
or Anymail will raise an AnymailUnsupportedFeature
error (if you are not ignoring unsupported features).

Also, SendinBlue’s API does not permit display names in recipient or reply-to
emails when sending with a template. Code like to=["Alice <alice@example.com>"]
will result in an unsupported feature error. (SendinBlue supports display names
only in non-template sends.)

Status tracking webhooks

If you are using Anymail’s normalized status tracking, add
the url at SendinBlue’s site under Transactional > Settings > Webhook [https://app-smtp.sendinblue.com/webhook].

The “URL to call” is:

https://random:random@yoursite.example.com/anymail/sendinblue/tracking/

	random:random is an ANYMAIL_WEBHOOK_SECRET shared secret

	yoursite.example.com is your Django site

Be sure to select the checkboxes for all the event types you want to receive. (Also make
sure you are in the “Transactional” section of their site; SendinBlue has a separate set
of “Campaign” webhooks, which don’t apply to messages sent through Anymail.)

If you are interested in tracking opens, note that SendinBlue has both a “First opening”
and an “Opened” event type, and will generate both the first time a message is opened.
Anymail normalizes both of these events to “opened.” To avoid double counting, you should
only enable one of the two.

SendinBlue will report these Anymail event_types:
queued, rejected, bounced, deferred, delivered, opened (see note above), clicked, complained,
unsubscribed, subscribed (though this should never occur for transactional email).

For events that occur in rapid succession, SendinBlue frequently delivers them out of order.
For example, it’s not uncommon to receive a “delivered” event before the corresponding “queued.”

The event’s esp_event field will be
a dict [https://docs.python.org/3.6/library/stdtypes.html#dict] of raw webhook data received from SendinBlue.

Inbound webhook

SendinBlue does not support inbound email handling.

SparkPost

Anymail integrates with the SparkPost [https://www.sparkpost.com/] email service, using their
Python sparkpost [https://pypi.org/project/sparkpost/] API client package.

Installation

You must ensure the sparkpost [https://pypi.org/project/sparkpost/] package is installed to use Anymail’s SparkPost
backend. Either include the “sparkpost” option when you install Anymail:

$ pip install django-anymail[sparkpost]

or separately run pip install sparkpost.

Settings

EMAIL_BACKEND

To use Anymail’s SparkPost backend, set:

EMAIL_BACKEND = "anymail.backends.sparkpost.EmailBackend"

in your settings.py.

SPARKPOST_API_KEY

A SparkPost API key with at least the “Transmissions: Read/Write” permission.
(Manage API keys in your SparkPost account API keys [https://app.sparkpost.com/account/credentials].)

This setting is optional; if not provided, the SparkPost API client will attempt
to read your API key from the SPARKPOST_API_KEY environment variable.

ANYMAIL = {
 ...
 "SPARKPOST_API_KEY": "<your API key>",
}

Anymail will also look for SPARKPOST_API_KEY at the
root of the settings file if neither ANYMAIL["SPARKPOST_API_KEY"]
nor ANYMAIL_SPARKPOST_API_KEY is set.

SPARKPOST_API_URL

The SparkPost API Endpoint [https://developers.sparkpost.com/api/index.html#header-api-endpoints] to use. This setting is optional; if not provided, Anymail will
use the python-sparkpost [https://pypi.org/project/python-sparkpost/] client default endpoint ("https://api.sparkpost.com/api/v1").

Set this to use a SparkPost EU account, or to work with any other API endpoint including
SparkPost Enterprise API and SparkPost Labs.

ANYMAIL = {
 ...
 "SPARKPOST_API_URL": "https://api.eu.sparkpost.com/api/v1", # use SparkPost EU
}

You must specify the full, versioned API endpoint as shown above (not just the base_uri).
This setting only affects Anymail’s calls to SparkPost, and will not apply to other code
using python-sparkpost [https://pypi.org/project/python-sparkpost/].

esp_extra support

To use SparkPost features not directly supported by Anymail, you can
set a message’s esp_extra to
a dict [https://docs.python.org/3.6/library/stdtypes.html#dict] of parameters for python-sparkpost’s transmissions.send method [https://python-sparkpost.readthedocs.io/en/latest/api/transmissions.html#sparkpost.transmissions.Transmissions.send].
Any keys in your esp_extra dict will override Anymail’s normal
values for that parameter.

Example:

message.esp_extra = {
 'transactional': True, # treat as transactional for unsubscribe and suppression
 'description': "Marketing test-run for new templates",
 'use_draft_template': True,
}

(You can also set "esp_extra" in Anymail’s global send defaults
to apply it to all messages.)

Limitations and quirks

	Anymail’s `message_id` is SparkPost’s `transmission_id`

	The message_id Anymail sets
on a message’s anymail_status
and in normalized webhook AnymailTrackingEvent
data is actually what SparkPost calls “transmission_id”.

Like Anymail’s message_id for other ESPs, SparkPost’s transmission_id
(together with the recipient email address), uniquely identifies a
particular message instance in tracking events.

(The transmission_id is the only unique identifier available when you
send your message. SparkPost also has something called “message_id”, but
that doesn’t get assigned until after the send API call has completed.)

If you are working exclusively with Anymail’s normalized message status
and webhook events, the distinction won’t matter: you can consistently
use Anymail’s message_id. But if you are also working with raw webhook
esp_event data or SparkPost’s events API, be sure to think “transmission_id”
wherever you’re speaking to SparkPost.

	Single tag

	Anymail uses SparkPost’s “campaign_id” to implement message tagging.
SparkPost only allows a single campaign_id per message. If your message has
two or more tags, you’ll get an
AnymailUnsupportedFeature error—or
if you’ve enabled ANYMAIL_IGNORE_UNSUPPORTED_FEATURES,
Anymail will use only the first tag.

(SparkPost’s “recipient tags” are not available for tagging messages.
They’re associated with individual addresses in stored recipient lists.)

	Envelope sender may use domain only

	Anymail’s envelope_sender is used to
populate SparkPost’s 'return_path' parameter. Anymail supplies the full
email address, but depending on your SparkPost configuration, SparkPost may
use only the domain portion and substitute its own encoded mailbox before
the @.

Batch sending/merge and ESP templates

SparkPost offers both ESP stored templates
and batch sending with per-recipient merge data.

You can use a SparkPost stored template by setting a message’s
template_id to the
template’s unique id. (When using a stored template, SparkPost prohibits
setting the EmailMessage’s subject, text body, or html body.)

Alternatively, you can refer to merge fields directly in an EmailMessage’s
subject, body, and other fields—the message itself is used as an
on-the-fly template.

In either case, supply the merge data values with Anymail’s
normalized merge_data
and merge_global_data
message attributes.

message = EmailMessage(
 ...
 to=["alice@example.com", "Bob <bob@example.com>"]
)
message.template_id = "11806290401558530" # SparkPost id
message.merge_data = {
 'alice@example.com': {'name': "Alice", 'order_no': "12345"},
 'bob@example.com': {'name': "Bob", 'order_no': "54321"},
}
message.merge_global_data = {
 'ship_date': "May 15",
 # Can use SparkPost's special "dynamic" keys for nested substitutions (see notes):
 'dynamic_html': {
 'status_html': "Status",
 },
 'dynamic_plain': {
 'status_plain': "Status: https://example.com/order/{{order_no}}",
 },
}

See SparkPost’s substitutions reference [https://developers.sparkpost.com/api/substitutions-reference] for more information on templates and
batch send with SparkPost. If you need the special “dynamic” keys for nested substitutions [https://developers.sparkpost.com/api/substitutions-reference#header-links-and-substitution-expressions-within-substitution-values],
provide them in Anymail’s merge_global_data
as shown in the example above. And if you want use_draft_template behavior, specify that
in esp_extra.

Status tracking webhooks

If you are using Anymail’s normalized status tracking, set up the
webhook in your SparkPost account settings under “Webhooks” [https://app.sparkpost.com/account/webhooks]:

	Target URL: https://yoursite.example.com/anymail/sparkpost/tracking/

	Authentication: choose “Basic Auth.” For username and password enter the two halves of the
random:random shared secret you created for your ANYMAIL_WEBHOOK_SECRET
Django setting. (Anymail doesn’t support OAuth webhook auth.)

	Events: click “Select” and then clear the checkbox for “Relay Events” category (which is for
inbound email). You can leave all the other categories of events checked, or disable
any you aren’t interested in tracking.

SparkPost will report these Anymail event_types:
queued, rejected, bounced, deferred, delivered, opened, clicked, complained, unsubscribed,
subscribed.

The event’s esp_event field will be
a single, raw SparkPost event [https://support.sparkpost.com/customer/portal/articles/1976204-webhook-event-reference]. (Although SparkPost calls webhooks with batches of events,
Anymail will invoke your signal receiver separately for each event in the batch.)
The esp_event is the raw, wrapped json event structure [https://support.sparkpost.com/customer/en/portal/articles/2311698-comparing-webhook-and-message-event-data] as provided by SparkPost:
{'msys': {'<event_category>': {...<actual event data>...}}}.

Inbound webhook

If you want to receive email from SparkPost through Anymail’s normalized inbound
handling, follow SparkPost’s Enabling Inbound Email Relaying [https://www.sparkpost.com/docs/tech-resources/inbound-email-relay-webhook/] guide to set up
Anymail’s inbound webhook.

The target parameter for the Relay Webhook will be:

https://random:random@yoursite.example.com/anymail/sparkpost/inbound/

	random:random is an ANYMAIL_WEBHOOK_SECRET shared secret

	yoursite.example.com is your Django site

Tips, tricks, and advanced usage

Some suggestions and recipes for getting things
done with Anymail:

	Handling transient errors

	Mixing email backends

	Using Django templates for email

	Securing webhooks

	Testing your app

	Batch send performance

Handling transient errors

Applications using Anymail need to be prepared to deal with connectivity issues
and other transient errors from your ESP’s API (as with any networked API).

Because Django doesn’t have a built-in way to say “try this again in a few moments,”
Anymail doesn’t have its own logic to retry network errors. The best way to handle
transient ESP errors depends on your Django project:

	If you already use something like celery [https://pypi.org/project/celery/] or Django channels [https://pypi.org/project/channels/]
for background task scheduling, that’s usually the best choice for handling Anymail sends.
Queue a task for every send, and wait to mark the task complete until the send succeeds
(or repeatedly fails, according to whatever logic makes sense for your app).

	Another option is the Pinax django-mailer [https://pypi.org/project/django-mailer/] package, which queues and automatically
retries failed sends for any Django EmailBackend, including Anymail. django-mailer maintains
its send queue in your regular Django DB, which is a simple way to get started but may not
scale well for very large volumes of outbound email.

In addition to handling connectivity issues, either of these approaches also has the advantage
of moving email sending to a background thread. This is a best practice for sending email from
Django, as it allows your web views to respond faster.

Mixing email backends

Since you are replacing Django’s global EMAIL_BACKEND [https://docs.djangoproject.com/en/stable/ref/settings/#std:setting-EMAIL_BACKEND], by default
Anymail will handle all outgoing mail, sending everything through your ESP.

You can use Django mail’s optional connection [https://docs.djangoproject.com/en/stable/topics/email/#django.core.mail.get_connection]
argument to send some mail through your ESP and others through a different system.

This could be useful, for example, to deliver customer emails with the ESP,
but send admin emails directly through an SMTP server:

from django.core.mail import send_mail, get_connection

send_mail connection defaults to the settings EMAIL_BACKEND, which
we've set to Anymail's Mailgun EmailBackend. This will be sent using Mailgun:
send_mail("Thanks", "We sent your order", "sales@example.com", ["customer@example.com"])

Get a connection to an SMTP backend, and send using that instead:
smtp_backend = get_connection('django.core.mail.backends.smtp.EmailBackend')
send_mail("Uh-Oh", "Need your attention", "admin@example.com", ["alert@example.com"],
 connection=smtp_backend)

You can even use multiple Anymail backends in the same app:
sendgrid_backend = get_connection('anymail.backends.sendgrid.EmailBackend')
send_mail("Password reset", "Here you go", "noreply@example.com", ["user@example.com"],
 connection=sendgrid_backend)

You can override settings.py settings with kwargs to get_connection.
This example supplies credentials for a different Mailgun sub-acccount:
alt_mailgun_backend = get_connection('anymail.backends.mailgun.EmailBackend',
 api_key=MAILGUN_API_KEY_FOR_MARKETING)
send_mail("Here's that info", "you wanted", "info@marketing.example.com", ["prospect@example.org"],
 connection=alt_mailgun_backend)

You can supply a different connection to Django’s
send_mail() [https://docs.djangoproject.com/en/stable/topics/email/#django.core.mail.send_mail] and send_mass_mail() [https://docs.djangoproject.com/en/stable/topics/email/#django.core.mail.send_mass_mail] helpers,
and in the constructor for an
EmailMessage [https://docs.djangoproject.com/en/stable/topics/email/#django.core.mail.EmailMessage] or EmailMultiAlternatives.

(See the django.utils.log.AdminEmailHandler [https://docs.djangoproject.com/en/stable/topics/logging/#django.utils.log.AdminEmailHandler] docs for more information
on Django’s admin error logging.)

You could expand on this concept and create your own EmailBackend that
dynamically switches between other Anymail backends—based on properties of the
message, or other criteria you set. For example, this gist [https://gist.github.com/tgehrs/58ae571b6db64225c317bf83c06ec312] shows an EmailBackend
that checks ESPs’ status-page APIs, and automatically falls back to a different ESP
when the first one isn’t working.

Using Django templates for email

ESP’s templating languages and merge capabilities are generally not compatible
with each other, which can make it hard to move email templates between them.

But since you’re working in Django, you already have access to the
extremely-full-featured Django templating system [https://docs.djangoproject.com/en/stable/topics/templates/#module-django.template].
You don’t even have to use Django’s template syntax: it supports other
template languages (like Jinja2).

You’re probably already using Django’s templating system for your HTML pages,
so it can be an easy decision to use it for your email, too.

To compose email using Django templates, you can use Django’s
render_to_string()
template shortcut to build the body and html.

Example that builds an email from the templates message_subject.txt,
message_body.txt and message_body.html:

from django.core.mail import EmailMultiAlternatives
from django.template import Context
from django.template.loader import render_to_string

merge_data = {
 'ORDERNO': "12345", 'TRACKINGNO': "1Z987"
}

plaintext_context = Context(autoescape=False) # HTML escaping not appropriate in plaintext
subject = render_to_string("message_subject.txt", merge_data, plaintext_context)
text_body = render_to_string("message_body.txt", merge_data, plaintext_context)
html_body = render_to_string("message_body.html", merge_data)

msg = EmailMultiAlternatives(subject=subject, from_email="store@example.com",
 to=["customer@example.com"], body=text_body)
msg.attach_alternative(html_body, "text/html")
msg.send()

Helpful add-ons

These (third-party) packages can be helpful for building your email
in Django:

	django-templated-mail [https://pypi.org/project/django-templated-mail/], django-mail-templated [https://pypi.org/project/django-mail-templated/], or django-mail-templated-simple [https://pypi.org/project/django-mail-templated-simple/]
for building messages from sets of Django templates.

	premailer [https://pypi.org/project/premailer/] for inlining css before sending

	BeautifulSoup [https://pypi.org/project/BeautifulSoup/], lxml [https://pypi.org/project/lxml/], or html2text [https://pypi.org/project/html2text/] for auto-generating plaintext from your html

Securing webhooks

If not used carefully, webhooks can create security vulnerabilities
in your Django application.

At minimum, you should use https and a shared authentication secret
for your Anymail webhooks. (Really, for any webhooks.)

Does this really matter?

Short answer: yes!

Do you allow unauthorized access to your APIs? Would you want
someone eavesdropping on API calls? Of course not. Well, a webhook
is just another API.

Think about the data your ESP sends and what your app does with it.
If your webhooks aren’t secured, an attacker could…

	accumulate a list of your customers’ email addresses

	fake bounces and spam reports, so you block valid user emails

	see the full contents of email from your users

	convincingly forge incoming mail, tricking your app into publishing
spam or acting on falsified commands

	overwhelm your DB with garbage data (do you store tracking info?
incoming attachments?)

… or worse. Why take a chance?

Use https

For security, your Django site must use https. The webhook URLs you
give your ESP need to start with https (not http).

Without https, the data your ESP sends your webhooks is exposed in transit.
This can include your customers’ email addresses, the contents of messages
you receive through your ESP, the shared secret used to authorize calls
to your webhooks (described in the next section), and other data you’d
probably like to keep private.

Configuring https is beyond the scope of Anymail, but there are many good
tutorials on the web. If you’ve previously dismissed https as too expensive
or too complicated, please take another look. Free https certificates are
available from Let’s Encrypt [https://letsencrypt.org/], and many hosting providers now offer easy
https configuration using Let’s Encrypt or their own no-cost option.

If you aren’t able to use https on your Django site, then you should
not set up your ESP’s webhooks.

Use a shared authentication secret

A webhook is an ordinary URL—anyone can post anything to it.
To avoid receiving random (or malicious) data in your webhook,
you should use a shared random secret that your ESP can present
with webhook data, to prove the post is coming from your ESP.

Most ESPs recommend using HTTP basic authentication as this shared
secret. Anymail includes support for this, via the
ANYMAIL_WEBHOOK_SECRET setting.
Basic usage is covered in the
webhooks configuration docs.

If something posts to your webhooks without the required shared
secret as basic auth in the HTTP_AUTHORIZATION header, Anymail will
raise an AnymailWebhookValidationFailure error, which is
a subclass of Django’s SuspiciousOperation [https://docs.djangoproject.com/en/stable/ref/exceptions/#django.core.exceptions.SuspiciousOperation].
This will result in an HTTP 400 response, without further processing
the data or calling your signal receiver function.

In addition to a single “random:random” string, you can give a list
of authentication strings. Anymail will permit webhook calls that match
any of the authentication strings:

ANYMAIL = {
 ...
 'WEBHOOK_SECRET': [
 'abcdefghijklmnop:qrstuvwxyz0123456789',
 'ZYXWVUTSRQPONMLK:JIHGFEDCBA9876543210',
],
}

This facilitates credential rotation: first, append a new authentication
string to the list, and deploy your Django site. Then, update the webhook
URLs at your ESP to use the new authentication. Finally, remove the old
(now unused) authentication string from the list and re-deploy.

Warning

If your webhook URLs don’t use https, this shared authentication
secret won’t stay secret, defeating its purpose.

Signed webhooks

Some ESPs implement webhook signing, which is another method of verifying
the webhook data came from your ESP. Anymail will verify these signatures
for ESPs that support them. See the docs for your
specific ESP for more details and configuration
that may be required.

Even with signed webhooks, it doesn’t hurt to also use a shared secret.

Additional steps

Webhooks aren’t unique to Anymail or to ESPs. They’re used for many
different types of inter-site communication, and you can find additional
recommendations for improving webhook security on the web.

For example, you might consider:

	Tracking event_id,
to avoid accidental double-processing of the same events (or replay attacks)

	Checking the webhook’s timestamp
is reasonably close the current time

	Configuring your firewall to reject webhook calls that come from
somewhere other than your ESP’s documented IP addresses (if your ESP
provides this information)

	Rate-limiting webhook calls in your web server or using something
like django-ratelimit [https://pypi.org/project/django-ratelimit/]

But you should start with using https and a random shared secret via HTTP auth.

Testing your app

Django’s own test runner makes sure your
test cases don’t send email [https://docs.djangoproject.com/en/stable/topics/testing/tools/#topics-testing-email],
by loading a dummy EmailBackend that accumulates messages
in memory rather than sending them. That works just fine with Anymail.

Anymail also includes its own “test” EmailBackend. This is intended primarily for
Anymail’s own internal tests, but you may find it useful for some of your test cases, too:

	Like Django’s locmem EmailBackend, Anymail’s test EmailBackend collects sent messages
in django.core.mail.outbox.
Django clears the outbox automatically between test cases.
See email testing tools [https://docs.djangoproject.com/en/stable/topics/testing/tools/#topics-testing-email] in the Django docs for more information.

	Unlike the locmem backend, Anymail’s test backend processes the messages as though they
would be sent by a generic ESP. This means every sent EmailMessage will end up with an
anymail_status attribute after sending,
and some common problems like malformed addresses may be detected.
(But no ESP-specific checks are run.)

	Anymail’s test backend also adds an anymail_send_params attribute to each EmailMessage
as it sends it. This is a dict of the actual params that would be used to send the message,
including both Anymail-specific attributes from the EmailMessage and options that would
come from Anymail settings defaults.

Here’s an example:

from django.core import mail
from django.test import TestCase
from django.test.utils import override_settings

@override_settings(EMAIL_BACKEND='anymail.backends.test.EmailBackend')
class SignupTestCase(TestCase):
 # Assume our app has a signup view that accepts an email address...
 def test_sends_confirmation_email(self):
 self.client.post("/account/signup/", {"email": "user@example.com"})

 # Test that one message was sent:
 self.assertEqual(len(mail.outbox), 1)

 # Verify attributes of the EmailMessage that was sent:
 self.assertEqual(mail.outbox[0].to, ["user@example.com"])
 self.assertEqual(mail.outbox[0].tags, ["confirmation"]) # an Anymail custom attr

 # Or verify the Anymail params, including any merged settings defaults:
 self.assertTrue(mail.outbox[0].anymail_send_params["track_clicks"])

Batch send performance

If you are sending batches of hundreds of emails at a time, you can improve
performance slightly by reusing a single HTTP connection to your ESP’s
API, rather than creating (and tearing down) a new connection for each message.

Most Anymail EmailBackends automatically reuse their HTTP connections when
used with Django’s batch-sending functions send_mass_mail() [https://docs.djangoproject.com/en/stable/topics/email/#django.core.mail.send_mass_mail] or
connection.send_messages(). See Sending multiple emails [https://docs.djangoproject.com/en/stable/topics/email/#topics-sending-multiple-emails]
in the Django docs for more info and an example.

(The exception is when Anymail wraps an ESP’s official Python package, and that
package doesn’t support connection reuse. Django’s batch-sending functions will
still work, but will incur the overhead of creating a separate connection for each
message sent. Currently, only SparkPost has this limitation.)

If you need even more performance, you may want to consider your ESP’s batch-sending
features. When supported by your ESP, Anymail can send multiple messages with a single
API call. See Batch sending with merge data for details, and be sure to check the
ESP-specific info because batch sending capabilities vary
significantly between ESPs.

Help

Troubleshooting

If Anymail’s not behaving like you expect, these troubleshooting tips can
often help you pinpoint the problem…

Check the error message

Look for an Anymail error message in your console (running Django in dev mode)
or in your server error logs. If you see something like “invalid API key”
or “invalid email address”, that’s often a big first step toward being able
to solve the problem.

Check your ESPs API logs

Most ESPs offer some sort of API activity log in their dashboards.
Check their logs to see if the
data you thought you were sending actually made it to your ESP, and
if they recorded any errors there.

Double-check common issues

	Did you add any required settings for your ESP to the ANYMAIL dict in your
settings.py? (E.g., "SENDGRID_API_KEY" for SendGrid.) See Supported ESPs.

	Did you add 'anymail' to the list of INSTALLED_APPS [https://docs.djangoproject.com/en/stable/ref/settings/#std:setting-INSTALLED_APPS] in settings.py?

	Are you using a valid from address? Django’s default is “webmaster@localhost”,
which most ESPs reject. Either specify the from_email explicitly on every message
you send, or add DEFAULT_FROM_EMAIL [https://docs.djangoproject.com/en/stable/ref/settings/#std:setting-DEFAULT_FROM_EMAIL] to your settings.py.

Try it without Anymail

If you think Anymail might be causing the problem, try switching your
EMAIL_BACKEND [https://docs.djangoproject.com/en/stable/ref/settings/#std:setting-EMAIL_BACKEND] setting to
Django’s File backend [https://docs.djangoproject.com/en/stable/topics/email/#topic-email-file-backend] and then running your
email-sending code again. If that causes errors, you’ll know the issue is somewhere
other than Anymail. And you can look through the EMAIL_FILE_PATH [https://docs.djangoproject.com/en/stable/ref/settings/#std:setting-EMAIL_FILE_PATH]
file contents afterward to see if you’re generating the email you want.

Support

If you’ve gone through the troubleshooting above and still aren’t sure what’s wrong,
the Anymail community is happy to help. Anymail is supported and maintained by the
people who use it—like you! (The vast majority of Anymail contributors volunteer
their time, and are not employees of any ESP.)

Here’s how to contact the Anymail community:

“How do I…?”

If the Search docs box on the left doesn’t find an answer,
ask a question on Stack Overflow [https://stackoverflow.com/questions/ask?tags=django-anymail] and tag it “django-anymail”.

“I’m getting an error or unexpected behavior…”

Either ask a question on Stack Overflow [https://stackoverflow.com/questions/ask?tags=django-anymail] tagged “django-anymail”
or open a GitHub issue [https://github.com/anymail/django-anymail/issues]. (But please don’t raise the same issue
in both places.)

Be sure to include:

	which ESP you’re using (Mailgun, SendGrid, etc.)

	what versions of Anymail, Django, and Python you’re running

	the relevant portions of your code and settings

	the text of any error messages

	any exception stack traces

and any other info you obtained from troubleshooting,
such as what you found in your ESP’s activity log.

“I found a bug…”

Open a GitHub issue [https://github.com/anymail/django-anymail/issues]. Be sure to include the information listed above.
(And if you know what the problem is, we always welcome
contributions with a fix!)

“I found a security issue!”

Contact the Anymail maintainers by emailing security<AT>anymail<DOT>info.
(Please don’t open a GitHub issue or post publicly about potential security problems.)

“Could Anymail support this ESP or feature…?”

If there’s already a GitHub issue [https://github.com/anymail/django-anymail/issues] open, express your support using GitHub’s
thumbs up reaction [https://blog.github.com/2016-03-10-add-reactions-to-pull-requests-issues-and-comments/]. If not, open a new issue. Either way, be sure to add a comment
if you’re able to help with development or testing.

Contributing

Anymail is maintained by its users. Your contributions are encouraged!

The Anymail source code [https://github.com/anymail/django-anymail] is on GitHub.

Contributors

See AUTHORS.txt [https://github.com/anymail/django-anymail/blob/master/AUTHORS.txt] for a list of some of the people who have helped
improve Anymail.

Anymail evolved from the Djrill [https://github.com/brack3t/Djrill] project. Special thanks to the
folks from brack3t [http://brack3t.com/] who developed the original version of Djrill.

Bugs

You can report problems or request features in Anymail’s GitHub issue tracker [https://github.com/anymail/django-anymail/issues].
(For a security-related issue that should not be disclosed publicly, instead email
Anymail’s maintainers at security<AT>anymail<DOT>info.)

We also have some Troubleshooting information that may be helpful.

Pull requests

Pull requests are always welcome to fix bugs and improve support for ESP and Django features.

	Please include test cases.

	We try to follow the Django coding style [https://docs.djangoproject.com/en/dev/internals/contributing/writing-code/coding-style/]
(basically, PEP 8 [https://www.python.org/dev/peps/pep-0008] with longer lines OK).

	By submitting a pull request, you’re agreeing to release your changes under under
the same BSD license as the rest of this project.

	Documentation is appreciated, but not required.
(Please don’t let missing or incomplete documentation keep you from contributing code.)

Testing

Anymail is tested on Travis CI [https://travis-ci.org/anymail/django-anymail] against several combinations of Django
and Python versions. Tests are run at least once a week, to check whether ESP APIs
and other dependencies have changed out from under Anymail.

For local development, the recommended test command is
tox -e django21-py36-all,django111-py27-all,lint, which tests a representative
combination of Python and Django versions. It also runs flake8 [https://pypi.org/project/flake8/] and other
code-style checkers. Some other test options are covered below, but using this
tox command catches most problems, and is a good pre-pull-request check.

Most of the included tests verify that Anymail constructs the expected ESP API
calls, without actually calling the ESP’s API or sending any email. So these tests
don’t require API keys, but they do require mock [https://pypi.org/project/mock/] and all ESP-specific
package requirements.

To run the tests, you can:

$ python setup.py test # (also installs test dependencies if needed)

Or:

$ pip install mock boto3 sparkpost # install test dependencies
$ python runtests.py

this command can also run just a few test cases, e.g.:
$ python runtests.py tests.test_mailgun_backend tests.test_mailgun_webhooks

Or to test against multiple versions of Python and Django all at once, use tox [https://pypi.org/project/tox/].
You’ll need at least Python 2.7 and Python 3.6 available. (If your system doesn’t come
with those, pyenv [https://github.com/pyenv/pyenv] is a helpful way to install and manage multiple Python versions.)

$ pip install tox # (if you haven't already)
$ tox -e django21-py36-all,django111-py27-all,lint # test recommended environments

you can also run just some test cases, e.g.:
$ tox -e django21-py36-all,django111-py27-all tests.test_mailgun_backend tests.test_utils

to test more Python/Django versions:
$ tox # ALL 20+ envs! (grab a coffee, or use `detox` to run tests in parallel)
$ tox --skip-missing-interpreters # if some Python versions aren't installed

In addition to the mocked tests, Anymail has integration tests which do call live ESP APIs.
These tests are normally skipped; to run them, set environment variables with the necessary
API keys or other settings. For example:

$ export MAILGUN_TEST_API_KEY='your-Mailgun-API-key'
$ export MAILGUN_TEST_DOMAIN='mail.example.com' # sending domain for that API key
$ tox -e django21-py36-all tests.test_mailgun_integration

Check the *_integration_tests.py files in the tests source [https://github.com/anymail/django-anymail/blob/master/tests] to see which variables
are required for each ESP. Depending on the supported features, the integration tests for
a particular ESP send around 5-15 individual messages. For ESPs that don’t offer a sandbox,
these will be real sends charged to your account (again, see the notes in each test case).
Be sure to specify a particular testenv with tox’s -e option, or tox may repeat the tests
for all 20+ supported combinations of Python and Django, sending hundreds of messages.

Documentation

As noted above, Anymail welcomes pull requests with missing or incomplete
documentation. (Code without docs is better than no contribution at all.)
But documentation—even needing edits—is always appreciated, as are pull
requests simply to improve the docs themselves.

Like many Python packages, Anymail’s docs use Sphinx [https://pypi.org/project/Sphinx/]. If you’ve never
worked with Sphinx or reStructuredText, Django’s Writing Documentation [https://docs.djangoproject.com/en/stable/internals/contributing/writing-documentation/] can
get you started.

It’s easiest to build Anymail’s docs using tox:

$ pip install tox # (if you haven't already)
$ tox -e docs # build the docs using Sphinx

You can run Python’s simple HTTP server to view them:

$ (cd .tox/docs/_html; python3 -m http.server 8123 --bind 127.0.0.1)

… and then open http://localhost:8123/ in a browser. Leave the server running,
and just re-run the tox command and refresh your browser as you make changes.

If you’ve edited the main README.rst, you can preview an approximation of what
will end up on PyPI at http://localhost:8123/readme.html.

Anymail’s Sphinx conf sets up a few enhancements you can use in the docs:

	Loads intersphinx [http://www.sphinx-doc.org/en/master/ext/intersphinx.html] mappings for Python 3, Django (stable), and Requests.
Docs can refer to things like :ref:`django:topics-testing-email`
or :class:`django.core.mail.EmailMessage`.

	Supports much of Django’s added markup [https://docs.djangoproject.com/en/stable/internals/contributing/writing-documentation/#django-specific-markup], notably :setting:
for documenting or referencing Django and Anymail settings.

	Allows linking to Python packages with :pypi:`package-name`
(via extlinks [http://www.sphinx-doc.org/en/stable/ext/extlinks.html]).

Changelog

Anymail releases follow semantic versioning.
Among other things, this means that minor updates (1.x to 1.y)
should always be backwards-compatible, and breaking changes will
always increment the major version number (1.x to 2.0).

Release history

v6.0

2019-02-23

Breaking changes

	Postmark: Anymail’s message.anymail_status.recipients[email] no longer
lowercases the recipient’s email address. For consistency with other ESPs, it now
uses the recipient email with whatever case was used in the sent message. If your
code is doing something like message.anymail_status.recipients[email.lower()],
you should remove the .lower()

	SendGrid: In batch sends, Anymail’s SendGrid backend now assigns a separate
message_id for each “to” recipient, rather than sharing a single id for all
recipients. This improves accuracy of tracking and statistics (and matches the
behavior of many other ESPs).

If your code uses batch sending (merge_data with multiple to-addresses) and checks
message.anymail_status.message_id after sending, that value will now be a set of
ids. You can obtain each recipient’s individual message_id with
message.anymail_status.recipients[to_email].message_id.
See docs [https://anymail.readthedocs.io/en/stable/esps/sendgrid/#sendgrid-message-id].

Features

	Add new merge_metadata option for providing per-recipient metadata in batch
sends. Available for all supported ESPs except Amazon SES and SendinBlue.
See docs [https://anymail.readthedocs.io/en/stable/sending/anymail_additions/#anymail.message.AnymailMessage.merge_metadata].
(Thanks @janneThoft [https://github.com/janneThoft] for the idea and SendGrid implementation.)

	Mailjet: Remove limitation on using cc or bcc together with merge_data.

Fixes

	Mailgun: Better error message for invalid sender domains (that caused a cryptic
“Mailgun API response 200: OK Mailgun Magnificent API” error in earlier releases).

	Postmark: Don’t error if a message is sent with only Cc and/or Bcc recipients
(but no To addresses). Also, message.anymail_status.recipients[email] now includes
send status for Cc and Bcc recipients. (Thanks to @ailionx [https://github.com/ailionx] for reporting the error.)

	SendGrid: With legacy templates, stop (ab)using “sections” for merge_global_data.
This avoids potential conflicts with a template’s own use of SendGrid section tags.

v5.0

2018-11-07

Breaking changes

	Mailgun: Anymail’s status tracking webhooks now report Mailgun “temporary failure”
events as Anymail’s normalized “deferred” event_type. (Previously they were reported
as “bounced”, lumping them in with permanent failures.) The new behavior is consistent
with how Anymail handles other ESP’s tracking notifications. In the unlikely case your
code depended on “temporary failure” showing up as “bounced” you will need to update it.
(Thanks @costela [https://github.com/costela].)

Features

	Postmark: Allow either template alias (string) or numeric template id for
Anymail’s template_id when sending with Postmark templates.

Fixes

	Mailgun: Improve error reporting when an inbound route is accidentally pointed
at Anymail’s tracking webhook url or vice versa.

v4.3

2018-10-11

Features

	Treat MIME attachments that have a Content-ID but no explicit Content-Disposition
header as inline, matching the behavior of many email clients. For maximum
compatibility, you should always set both (or use Anymail’s inline helper functions).
(Thanks @costela [https://github.com/costela].)

Fixes

	Mailgun: Raise AnymailUnsupportedFeature error when attempting to send an
attachment without a filename (or inline attachment without a Content-ID), because
Mailgun silently drops these attachments from the sent message. (See
docs [https://anymail.readthedocs.io/en/stable/esps/mailgun/#limitations-and-quirks].
Thanks @costela [https://github.com/costela] for identifying this undocumented Mailgun API limitation.)

	Mailgun: Fix problem where attachments with non-ASCII filenames would be lost.
(Works around Requests/urllib3 issue encoding multipart/form-data filenames in a way
that isn’t RFC 7578 compliant. Thanks to @decibyte [https://github.com/decibyte] for catching the problem.)

Other

	Add (undocumented) DEBUG_API_REQUESTS Anymail setting. When enabled, prints raw
API request and response during send. Currently implemented only for Requests-based
backends (all but Amazon SES and SparkPost). Because this can expose API keys and
other sensitive info in log files, it should not be used in production.

v4.2

2018-09-07

Features

	Postmark: Support per-recipient template merge_data and batch sending. (Batch
sending can be used with or without a template. See
docs [https://anymail.readthedocs.io/en/stable/esps/postmark/#postmark-templates].)

Fixes

	Postmark: When using template_id, ignore empty subject and body. (Postmark
issues an error if Django’s default empty strings are used with template sends.)

v4.1

2018-08-27

Features

	SendGrid: Support both new “dynamic” and original “legacy” transactional
templates. (See
docs [https://anymail.readthedocs.io/en/stable/esps/sendgrid/#sendgrid-templates].)

	SendGrid: Allow merging esp_extra["personalizations"] dict into other message-derived
personalizations. (See
docs [https://anymail.readthedocs.io/en/stable/esps/sendgrid/#sendgrid-esp-extra].)

v4.0

2018-08-19

Breaking changes

	Drop support for Django versions older than Django 1.11.
(For compatibility back to Django 1.8, stay on the Anymail v3.0
extended support branch.)

	SendGrid: Remove the legacy SendGrid v2 EmailBackend.
(Anymail’s default since v0.8 has been SendGrid’s newer v3 API.)
If your settings.py EMAIL_BACKEND still references “sendgrid_v2,” you must
upgrade to v3 [https://anymail.readthedocs.io/en/v3.0/esps/sendgrid/#upgrading-to-sendgrid-s-v3-api].

Features

	Mailgun: Add support for new Mailgun webhooks. (Mailgun’s original “legacy
webhook” format is also still supported. See
docs [https://anymail.readthedocs.io/en/stable/esps/mailgun/#mailgun-webhooks].)

	Mailgun: Document how to use new European region. (This works in earlier
Anymail versions, too.)

	Postmark: Add support for Anymail’s normalized metadata in sending
and webhooks.

Fixes

	Avoid problems with Gmail blocking messages that have inline attachments, when sent
from a machine whose local hostname ends in .com. Change Anymail’s
attach_inline_image() default Content-ID domain to the literal text “inline”
(rather than Python’s default of the local hostname), to work around a limitation
of some ESP APIs that don’t permit distinct content ID and attachment filenames
(Mailgun, Mailjet, Mandrill and SparkPost). See #112 [https://github.com/anymail/issues/112] for more details.

	Amazon SES: Work around an
Amazon SES bug [https://forums.aws.amazon.com/thread.jspa?threadID=287048]
that can corrupt non-ASCII message bodies if you are using SES’s open or click
tracking. (See #115 [https://github.com/anymail/issues/115] for more details. Thanks to @varche1 [https://github.com/varche1] for isolating
the specific conditions that trigger the bug.)

Other

	Maintain changelog in the repository itself (rather than in GitHub release notes).

	Test against released versions of Python 3.7 and Django 2.1.

v3.0

2018-05-30

This is an extended support release. Anymail v3.x will receive security updates
and fixes for any breaking ESP API changes through at least April, 2019.

Breaking changes

	Drop support for Python 3.3 (see #99 [https://github.com/anymail/issues/99]).

	SendGrid: Fix a problem where Anymail’s status tracking webhooks didn’t always
receive the same event.message_id as the sent message.anymail_status.message_id,
due to unpredictable behavior by SendGrid’s API. Anymail now generates a UUID for
each sent message and attaches it as a SendGrid custom arg named anymail_id. For most
users, this change should be transparent. But it could be a breaking change if you
are relying on a specific message_id format, or relying on message_id matching the
Message-ID mail header or SendGrid’s “smtp-id” event field. (More details in the
docs [https://anymail.readthedocs.io/en/stable/esps/sendgrid/#sendgrid-message-id];
also see #108 [https://github.com/anymail/issues/108].) Thanks to @joshkersey [https://github.com/joshkersey] for the report and the fix.

Features

	Support Django 2.1 prerelease.

Fixes

	Mailjet: Fix tracking webhooks to work correctly when Mailjet “group events”
option is disabled (see #106 [https://github.com/anymail/issues/106]).

Deprecations

	This will be the last Anymail release to support Django 1.8, 1.9, and 1.10
(see #110 [https://github.com/anymail/issues/110]).

	This will be the last Anymail release to support the legacy SendGrid v2 EmailBackend
(see #111 [https://github.com/anymail/issues/111]). (SendGrid’s newer v3 API has been the default since Anymail v0.8.)

If these deprecations affect you and you cannot upgrade, set your requirements to
django-anymail~=3.0 (a “compatible release” specifier, equivalent to >=3.0,==3.*).

v2.2

2018-04-16

Fixes

	Fix a breaking change accidentally introduced in v2.1: The boto3 package is no
longer required if you aren’t using Amazon SES.

v2.1

2018-04-11

NOTE: v2.1 accidentally introduced a breaking change: enabling Anymail webhooks
with include('anymail.urls') causes an error if boto3 is not installed, even if you
aren’t using Amazon SES. This is fixed in v2.2.

Features

	Amazon SES: Add support for this ESP
(docs [https://anymail.readthedocs.io/en/stable/esps/amazon_ses/]).

	SparkPost: Add SPARKPOST_API_URL setting to support SparkPost EU and SparkPost
Enterprise
(docs [https://anymail.readthedocs.io/en/stable/esps/sparkpost/#std:setting-ANYMAIL_SPARKPOST_API_URL]).

	Postmark: Update for Postmark “modular webhooks.” This should not impact client
code. (Also, older versions of Anymail will still work correctly with Postmark’s
webhook changes.)

Fixes

	Inbound: Fix several issues with inbound messages, particularly around non-ASCII
headers and body content. Add workarounds for some limitations in older Python email
packages.

Other

	Use tox to manage Anymail test environments (see contributor
docs [https://anymail.readthedocs.io/en/stable/contributing/#testing]).

Deprecations

	This will be the last Anymail release to support Python 3.3. See #99 [https://github.com/anymail/issues/99] for more
information.

v2.0

2018-03-08

Breaking changes

	Drop support for deprecated WEBHOOK_AUTHORIZATION setting. If you are using webhooks
and still have this Anymail setting, you must rename it to WEBHOOK_SECRET. See the
v1.4 release notes.

	Handle Reply-To, From, and To in EmailMessage extra_headers the same as
Django’s SMTP EmailBackend if supported by your ESP, otherwise raise an unsupported
feature error. Fixes the SparkPost backend to be consistent with other backends if
both headers["Reply-To"] and reply_to are set on the same message. If you are
setting a message’s headers["From"] or headers["To"] (neither is common), the
new behavior is likely a breaking change. See
docs [https://anymail.readthedocs.io/en/stable/sending/django_email/#additional-headers]
and #91 [https://github.com/anymail/issues/91].

	Treat EmailMessage extra_headers keys as case-insensitive in all backends, for
consistency with each other (and email specs). If you are specifying duplicate
headers whose names differ only in case, this may be a breaking change. See
docs [https://anymail.readthedocs.io/en/stable/sending/django_email/#additional-headers].

Features

	SendinBlue: Add support for this ESP
(docs [https://anymail.readthedocs.io/en/stable/esps/sendinblue/]).
Thanks to @RignonNoel [https://github.com/RignonNoel] for the implementation.

	Add EmailMessage envelope_sender attribute, which can adjust the message’s
Return-Path if supported by your ESP
(docs [https://anymail.readthedocs.io/en/stable/sending/anymail_additions/#anymail.message.AnymailMessage.envelope_sender]).

	Add universal wheel to PyPI releases for faster installation.

Other

	Update setup.py metadata, clean up implementation. (Hadn’t really been touched
since original Djrill version.)

	Prep for Python 3.7.

v1.4

2018-02-08

Security

	Fix a low severity security issue affecting Anymail v0.2–v1.3: rename setting
WEBHOOK_AUTHORIZATION to WEBHOOK_SECRET to prevent inclusion in Django error
reporting.
(CVE-2018-1000089 [https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2018-1000089])

More information

Django error reporting includes the value of your Anymail WEBHOOK_AUTHORIZATION
setting. In a properly-configured deployment, this should not be cause for concern.
But if you have somehow exposed your Django error reports (e.g., by mis-deploying
with DEBUG=True or by sending error reports through insecure channels), anyone who
gains access to those reports could discover your webhook shared secret. An
attacker could use this to post fabricated or malicious Anymail tracking/inbound events
to your app, if you are using those Anymail features.

The fix renames Anymail’s webhook shared secret setting so that Django’s error
reporting mechanism will
sanitize [https://docs.djangoproject.com/en/stable/ref/settings/#debug] it.

If you are using Anymail’s event tracking and/or inbound webhooks, you should upgrade
to this release and change “WEBHOOK_AUTHORIZATION” to “WEBHOOK_SECRET” in the ANYMAIL
section of your settings.py. You may also want to
rotate the shared secret [https://anymail.readthedocs.io/en/stable/tips/securing_webhooks/#use-a-shared-authorization-secret]
value, particularly if you have ever exposed your Django error reports to untrusted
individuals.

If you are only using Anymail’s EmailBackends for sending email and have not set up
Anymail’s webhooks, this issue does not affect you.

The old WEBHOOK_AUTHORIZATION setting is still allowed in this release, but will issue
a system-check warning when running most Django management commands. It will be removed
completely in a near-future release, as a breaking change.

Thanks to Charlie DeTar (@yourcelf [https://github.com/yourcelf]) for responsibly reporting this security issue
through private channels.

v1.3

2018-02-02

Security

	v1.3 includes the v1.2.1 security fix released at the same time. Please review the
v1.2.1 release notes, below, if you are using Anymail’s tracking webhooks.

Features

	Inbound handling: Add normalized inbound message event, signal, and webhooks
for all supported ESPs. (See new
Receiving mail [https://anymail.readthedocs.io/en/stable/inbound/] docs.)
This hasn’t been through much real-world testing yet; bug reports and feedback
are very welcome.

	API network timeouts: For Requests-based backends (all but SparkPost), use a
default timeout of 30 seconds for all ESP API calls, to avoid stalling forever on
a bad connection. Add a REQUESTS_TIMEOUT Anymail setting to override. (See #80 [https://github.com/anymail/issues/80].)

	Test backend improvements: Generate unique tracking message_id when using the
test backend [https://anymail.readthedocs.io/en/stable/tips/test_backend/];
add console backend for use in development. (See #85 [https://github.com/anymail/issues/85].)

v1.2.1

2018-02-02

Security

	Fix a moderate severity security issue affecting Anymail v0.2–v1.2:
prevent timing attack on WEBHOOK_AUTHORIZATION secret.
(CVE-2018-6596 [https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2018-6596])

More information

If you are using Anymail’s tracking webhooks, you should upgrade to this release,
and you may want to rotate to a new WEBHOOK_AUTHORIZATION shared secret (see
docs [https://anymail.readthedocs.io/en/stable/tips/securing_webhooks/#use-a-shared-authorization-secret]).
You should definitely change your webhook auth if your logs indicate attempted exploit.

(If you are only sending email using an Anymail EmailBackend, and have not set up
Anymail’s event tracking webhooks, this issue does not affect you.)

Anymail’s webhook validation was vulnerable to a timing attack. A remote attacker
could use this to obtain your WEBHOOK_AUTHORIZATION shared secret, potentially allowing
them to post fabricated or malicious email tracking events to your app.

There have not been any reports of attempted exploit. (The vulnerability was discovered
through code review.) Attempts would be visible in HTTP logs as a very large number of
400 responses on Anymail’s webhook urls (by default “/anymail/esp_name/tracking/”),
and in Python error monitoring as a very large number of
AnymailWebhookValidationFailure exceptions.

v1.2

2017-11-02

Features

	Postmark: Support new click webhook in normalized tracking events

v1.1

2017-10-28

Fixes

	Mailgun: Support metadata in opened/clicked/unsubscribed tracking webhooks,
and fix potential problems if metadata keys collided with Mailgun event parameter
names. (See #76 [https://github.com/anymail/issues/76], #77 [https://github.com/anymail/issues/77])

Other

	Rework Anymail’s ParsedEmail class and rename to EmailAddress to align it with
similar functionality in the Python 3.6 email package, in preparation for future
inbound support. ParsedEmail was not documented for use outside Anymail’s internals
(so this change does not bump the semver major version), but if you were using
it in an undocumented way you will need to update your code.

v1.0

2017-09-18

It’s official: Anymail is no longer “pre-1.0.” The API has been stable
for many months, and there’s no reason not to use Anymail in production.

Breaking changes

	There are no new breaking changes in the 1.0 release, but a breaking change
introduced several months ago in v0.8 is now strictly enforced. If you still have
an EMAIL_BACKEND setting that looks like
“anymail.backends.*espname*.EspNameBackend”, you’ll need to change it to just
“anymail.backends.*espname*.EmailBackend”. (Earlier versions had issued a
DeprecationWarning. See the v0.8 release notes.)

Features

	Clean up and document Anymail’s
Test EmailBackend [https://anymail.readthedocs.io/en/stable/tips/test_backend/]

	Add notes on
handling transient ESP errors [https://anymail.readthedocs.io/en/stable/tips/transient_errors/]
and improving
batch send performance [https://anymail.readthedocs.io/en/stable/tips/performance/]

	SendGrid: handle Python 2 long integers in metadata and extra headers

v1.0.rc0

2017-09-09

Breaking changes

	All backends: The old EspNameBackend names that were deprecated in v0.8 have
been removed. Attempting to use the old names will now fail, rather than issue a
DeprecationWarning. See the v0.8 release notes.

Features

	Anymail’s Test EmailBackend is now
documented [https://anymail.readthedocs.io/en/stable/tips/test_backend/]
(and cleaned up)

v0.11.1

2017-07-24

Fixes

	Mailjet: Correct settings docs.

v0.11

2017-07-13

Features

	Mailjet: Add support for this ESP. Thanks to @Lekensteyn [https://github.com/Lekensteyn] and @calvin [https://github.com/calvin].
(Docs [https://anymail.readthedocs.io/en/stable/esps/mailjet/])

	In webhook handlers, AnymailTrackingEvent.metadata now defaults to {}, and
.tags defaults to [], if the ESP does not supply these fields with the event.
(See #67 [https://github.com/anymail/issues/67].)

v0.10

2017-05-22

Features

	Mailgun, SparkPost: Support multiple from addresses, as a comma-separated
from_email string. (Not a list of strings, like the recipient fields.)
RFC-5322 allows multiple from email addresses, and these two ESPs support it.
Though as a practical matter, multiple from emails are either ignored or treated
as a spam signal by receiving mail handlers. (See #60 [https://github.com/anymail/issues/60].)

Fixes

	Fix crash sending forwarded email messages as attachments. (See #59 [https://github.com/anymail/issues/59].)

	Mailgun: Fix webhook crash on bounces from some receiving mail handlers.
(See #62 [https://github.com/anymail/issues/62].)

	Improve recipient-parsing error messages and consistency with Django’s SMTP
backend. In particular, Django (and now Anymail) allows multiple, comma-separated
email addresses in a single recipient string.

v0.9

2017-04-04

Breaking changes

	Mandrill, Postmark: Normalize soft-bounce webhook events to event_type
‘bounced’ (rather than ‘deferred’).

Features

	Officially support released Django 1.11, including under Python 3.6.

v0.8

2017-02-02

Breaking changes

	All backends: Rename all Anymail backends to just EmailBackend, matching
Django’s naming convention. E.g., you should update:
EMAIL_BACKEND = "anymail.backends.mailgun.MailgunBackend" # old
to: EMAIL_BACKEND = "anymail.backends.mailgun.EmailBackend" # new

The old names still work, but will issue a DeprecationWarning and will be removed
in some future release (Apologies for this change; the old naming was a holdover
from Djrill, and I wanted to establish consistency with other Django EmailBackends
before Anymail 1.0. See #49 [https://github.com/anymail/issues/49].)

	SendGrid: Update SendGrid backend to their newer Web API v3. This should be a
transparent change for most projects. Exceptions: if you use SendGrid
username/password auth, Anymail’s esp_extra with “x-smtpapi”, or multiple Reply-To
addresses, please review the
porting notes [https://anymail.readthedocs.io/en/v3.0/esps/sendgrid/#sendgrid-v3-upgrade].

The SendGrid v2 EmailBackend
remains available [https://anymail.readthedocs.io/en/v3.0/esps/sendgrid/#sendgrid-v2-backend]
if you prefer it, but is no longer the default.

Features

	Test on Django 1.11 prerelease, including under Python 3.6.

Fixes

	Mandrill: Fix bug in webhook signature validation when using basic auth via the
WEBHOOK_AUTHORIZATION setting. (If you were using the MANDRILL_WEBHOOK_URL setting
to work around this problem, you should be able to remove it. See #48 [https://github.com/anymail/issues/48].)

v0.7

2016-12-30

Breaking changes

	Fix a long-standing bug validating email addresses. If an address has a display name
containing a comma or parentheses, RFC-5322 requires double-quotes around the
display name ('"Widgets, Inc." <widgets@example.com>'). Anymail now raises a new
AnymailInvalidAddress error for misquoted display names and other malformed
addresses. (Previously, it silently truncated the address, leading to obscure
exceptions or unexpected behavior. If you were unintentionally relying on that buggy
behavior, this may be a breaking change. See #44 [https://github.com/anymail/issues/44].) In general, it’s safest to
always use double-quotes around all display names.

Features

	Postmark: Support Postmark’s new message delivery event in Anymail normalized
tracking webhook. (Update your Postmark config to enable the new event. See
docs [https://anymail.readthedocs.io/en/stable/esps/postmark/#status-tracking-webhooks].)

	Handle virtually all uses of Django lazy translation strings as EmailMessage
properties. (In earlier releases, these could sometimes lead to obscure exceptions
or unexpected behavior with some ESPs. See #34 [https://github.com/anymail/issues/34].)

	Mandrill: Simplify and document two-phase process for setting up
Mandrill webhooks
(docs [https://anymail.readthedocs.io/en/stable/esps/mandrill/#status-tracking-webhooks]).

v0.6.1

2016-11-01

Fixes

	Mailgun, Mandrill: Support older Python 2.7.x versions in webhook validation
(#39 [https://github.com/anymail/issues/39]; thanks @sebbacon [https://github.com/sebbacon]).

	Postmark: Handle older-style ‘Reply-To’ in EmailMessage headers (#41 [https://github.com/anymail/issues/41]).

v0.6

2016-10-25

Breaking changes

	SendGrid: Fix missing html or text template body when using template_id with
an empty Django EmailMessage body. In the (extremely-unlikely) case you were relying
on the earlier quirky behavior to not send your saved html or text template, you
may want to verify that your SendGrid templates have matching html and text.
(docs [https://anymail.readthedocs.io/en/stable/esps/sendgrid/#batch-sending-merge-and-esp-templates]
– also see #32 [https://github.com/anymail/issues/32].)

Features

	Postmark: Add support for track_clicks
(docs [https://anymail.readthedocs.io/en/stable/esps/postmark/#limitations-and-quirks])

	Initialize AnymailMessage.anymail_status to empty status, rather than None;
clarify docs around anymail_status availability
(docs [https://anymail.readthedocs.io/en/stable/sending/anymail_additions/#esp-send-status])

v0.5

2016-08-22

Features

	Mailgun: Add MAILGUN_SENDER_DOMAIN setting.
(docs [https://anymail.readthedocs.io/en/stable/esps/mailgun/#mailgun-sender-domain])

v0.4.2

2016-06-24

Fixes

	SparkPost: Fix API error “Both content object and template_id are specified”
when using template_id (#24 [https://github.com/anymail/issues/24]).

v0.4.1

2016-06-23

Features

	SparkPost: Add support for this ESP.
(docs [https://anymail.readthedocs.io/en/stable/esps/sparkpost/])

	Test with Django 1.10 beta

	Requests-based backends (all but SparkPost) now raise AnymailRequestsAPIError
for any requests.RequestException, for consistency and proper fail_silently behavior.
(The exception will also be a subclass of the original RequestException, so no
changes are required to existing code looking for specific requests failures.)

v0.4

(not released)

v0.3.1

2016-05-18

Fixes

	SendGrid: Fix API error that to is required when using merge_data
(see #14 [https://github.com/anymail/issues/14]; thanks @lewistaylor [https://github.com/lewistaylor]).

v0.3

2016-05-13

Features

	Add support for ESP stored templates and batch sending/merge. Exact capabilities
vary widely by ESP – be sure to read the notes for your ESP.
(docs [https://anymail.readthedocs.io/en/stable/sending/templates/])

	Add pre_send and post_send signals.
docs [https://anymail.readthedocs.io/en/stable/sending/signals/]

	Mandrill: add support for esp_extra; deprecate Mandrill-specific message
attributes left over from Djrill. See
migrating from Djrill [https://anymail.readthedocs.io/en/stable/esps/mandrill/#migrating-from-djrill].

v0.2

2016-04-30

Breaking changes

	Mailgun: eliminate automatic JSON encoding of complex metadata values like lists
and dicts. (Was based on misreading of Mailgun docs; behavior now matches metadata
handling for all other ESPs.)

	Mandrill: remove obsolete wehook views and signal inherited from Djrill. See
Djrill migration notes [https://anymail.readthedocs.io/en/stable/esps/mandrill/#changes-to-webhooks]
if you were relying on that code.

Features

	Add support for ESP event-tracking webhooks, including normalized
AnymailTrackingEvent.
(docs [https://anymail.readthedocs.io/en/stable/sending/tracking/])

	Allow get_connection kwargs overrides of most settings for individual backend
instances. Can be useful for, e.g., working with multiple SendGrid subusers.
(docs [https://anymail.readthedocs.io/en/stable/installation/#anymail-settings-reference])

	SendGrid: Add SENDGRID_GENERATE_MESSAGE_ID setting to control workarounds for
ensuring unique tracking ID on SendGrid messages/events (default enabled).
docs [https://anymail.readthedocs.io/en/stable/esps/sendgrid/#sendgrid-message-id]

	SendGrid: improve handling of ‘filters’ in esp_extra, making it easier to mix
custom SendGrid app filter settings with Anymail normalized message options.

Other

	Drop pre-Django 1.8 test code. (Wasn’t being used, as Anymail requires Django 1.8+.)

	Mandrill: note limited support in docs (because integration tests no
longer available).

v0.1

2016-03-14

Although this is an early release, it provides functional Django
EmailBackends and passes integration tests with all supported ESPs
(Mailgun, Mandrill, Postmark, SendGrid).

It has (obviously) not yet undergone extensive real-world testing, and
you are encouraged to monitor it carefully if you choose to use it in
production. Please report bugs and problems here in GitHub.

Features

	Postmark: Add support for this ESP.

	SendGrid: Add support for username/password auth.

	Simplified install: no need to name the ESP (pip install django-anymail
– not ... django-anymail[mailgun])

0.1.dev2

2016-03-12

Features

	SendGrid: Add support for this ESP.

	Add attach_inline_image_file helper

Fixes

	Change inline-attachment handling to look for Content-Disposition: inline,
and to preserve filenames where supported by the ESP.

0.1.dev1

2016-03-10

Features

	Mailgun, Mandrill: initial supported ESPs.

	Initial docs

Anymail documentation privacy

Anymail’s documentation site at anymail.readthedocs.io [https://anymail.readthedocs.io/] is hosted by
Read the Docs. Please see the Read the Docs Privacy Policy [https://docs.readthedocs.io/en/latest/privacy-policy.html] for more
about what information Read the Docs collects and how they use it.

Separately, Anymail’s maintainers have configured Google Analytics
third-party tracking on this documentation site. We (Anymail’s maintainers)
use this analytics data to better understand how these docs are used, for
the purpose of improving the content. Google Analytics helps us answer
questions like:

	what docs pages are most and least viewed

	what terms people search for in the documentation

	what paths readers (in general) tend to take through the docs

But we’re not able to identify any particular person or track individual
behavior. Anymail’s maintainers do not collect or have access to any
personally identifiable (or even potentially personally identifiable)
information about visitors to this documentation site.

We also use Google Analytics to collect feedback from the “Is this page helpful?”
box at the bottom of the page. Please do not include any personally-identifiable
information in suggestions you submit through this form.
(If you would like to contact Anymail’s maintainers, see Support.)

Anymail’s maintainers have not connected our Google Analytics implementation
to any Google Advertising Services. (Incidentally, we’re not involved with the
ads you may see here. Those come from—and support—Read the Docs under
their ethical ads [https://docs.readthedocs.io/en/latest/ethical-advertising.html] model.)

The developer audience for Anymail’s docs is likely already familiar
with site analytics, tracking cookies, and related concepts. To learn more
about how Google Analytics uses cookies and how to opt out of
analytics tracking, see the “Information for Visitors of Sites and Apps Using
Google Analytics” section of Google’s Safeguarding your data [https://support.google.com/analytics/answer/6004245] document.

Questions about privacy and information practices related to this Anymail
documentation site can be emailed to privacy<at>anymail<dot>info.
(This is not an appropriate contact for questions about using Anymail;
see Help if you need assistance with your code.)

 Python Module Index

 a

 		 	

 		
 a	

 	[image: -]
 	
 anymail	

 	
 	
 anymail.exceptions	

 	
 	
 anymail.message	

 	
 	
 anymail.signals	

Index

 A
 | C
 | D
 | E
 | F
 | G
 | H
 | I
 | M
 | P
 | R
 | S
 | T
 | U

A

 	
 	
 ANYMAIL

 	setting

 	anymail.exceptions (module)

 	anymail.inbound.AnymailInboundMessage (built-in class)

 	anymail.message (module)

 	anymail.signals (module)

 	anymail.signals.AnymailInboundEvent (built-in class)

 	anymail.signals.post_send (built-in variable)

 	anymail.signals.pre_send (built-in variable)

 	
 ANYMAIL_AMAZON_SES_AUTO_CONFIRM_SNS_SUBSCRIPTIONS

 	setting

 	
 ANYMAIL_AMAZON_SES_CLIENT_PARAMS

 	setting

 	
 ANYMAIL_AMAZON_SES_CONFIGURATION_SET_NAME

 	setting

 	
 ANYMAIL_AMAZON_SES_MESSAGE_TAG_NAME

 	setting

 	
 ANYMAIL_AMAZON_SES_SESSION_PARAMS

 	setting

 	
 ANYMAIL_IGNORE_RECIPIENT_STATUS

 	setting

 	
 ANYMAIL_IGNORE_UNSUPPORTED_FEATURES

 	setting

 	
 ANYMAIL_MAILGUN_API_KEY

 	setting

 	
 ANYMAIL_MAILGUN_API_URL

 	setting

 	
 ANYMAIL_MAILGUN_SENDER_DOMAIN

 	setting

 	
 ANYMAIL_MAILJET_API_KEY

 	setting

 	
 ANYMAIL_MAILJET_API_URL

 	setting

 	
 ANYMAIL_MANDRILL_API_KEY

 	setting

 	
 ANYMAIL_MANDRILL_API_URL

 	setting

 	
 ANYMAIL_MANDRILL_WEBHOOK_KEY

 	setting

 	
 ANYMAIL_MANDRILL_WEBHOOK_URL

 	setting

 	
 ANYMAIL_POSTMARK_API_URL

 	setting

 	
 	
 ANYMAIL_POSTMARK_SERVER_TOKEN

 	setting

 	
 ANYMAIL_REQUESTS_TIMEOUT

 	setting

 	
 ANYMAIL_SEND_DEFAULTS

 	setting

 	
 ANYMAIL_SENDGRID_API_KEY

 	setting

 	
 ANYMAIL_SENDGRID_API_URL

 	setting

 	
 ANYMAIL_SENDGRID_GENERATE_MESSAGE_ID

 	setting

 	
 ANYMAIL_SENDGRID_MERGE_FIELD_FORMAT

 	setting

 	
 ANYMAIL_SENDINBLUE_API_KEY

 	setting

 	
 ANYMAIL_SENDINBLUE_API_URL

 	setting

 	
 ANYMAIL_SPARKPOST_API_KEY

 	setting

 	
 ANYMAIL_SPARKPOST_API_URL

 	setting

 	anymail_status (anymail.message.AnymailMessage attribute)

 	
 ANYMAIL_WEBHOOK_SECRET

 	setting

 	AnymailAPIError

 	AnymailInboundMessage (built-in class)

 	AnymailInvalidAddress

 	AnymailMessage (class in anymail.message)

 	AnymailMessageMixin (class in anymail.message)

 	AnymailRecipientsRefused

 	AnymailSerializationError

 	AnymailStatus (class in anymail.message)

 	AnymailTrackingEvent (class in anymail.signals)

 	AnymailUnsupportedFeature

 	as_uploaded_file() (AnymailInboundMessage method)

 	attach_inline_image() (anymail.message.AnymailMessage method)

 	(in module anymail.message)

 	attach_inline_image_file() (anymail.message.AnymailMessage method)

 	(in module anymail.message)

 	attachments (anymail.inbound.AnymailInboundMessage attribute)

C

 	
 	cc (anymail.inbound.AnymailInboundMessage attribute)

 	
 	click_url (anymail.signals.AnymailTrackingEvent attribute)

D

 	
 	date (anymail.inbound.AnymailInboundMessage attribute)

 	
 	description (anymail.signals.AnymailTrackingEvent attribute)

E

 	
 	envelope_recipient (anymail.inbound.AnymailInboundMessage attribute)

 	envelope_sender (anymail.inbound.AnymailInboundMessage attribute)

 	(anymail.message.AnymailMessage attribute)

 	esp_event (anymail.signals.AnymailInboundEvent attribute)

 	(anymail.signals.AnymailTrackingEvent attribute)

 	
 	esp_extra (anymail.message.AnymailMessage attribute)

 	esp_response (anymail.message.AnymailStatus attribute)

 	event_id (anymail.signals.AnymailInboundEvent attribute)

 	(anymail.signals.AnymailTrackingEvent attribute)

 	event_type (anymail.signals.AnymailInboundEvent attribute)

 	(anymail.signals.AnymailTrackingEvent attribute)

F

 	
 	from_email (anymail.inbound.AnymailInboundMessage attribute)

G

 	
 	get_content_bytes() (AnymailInboundMessage method)

 	get_content_disposition() (AnymailInboundMessage method)

 	get_content_maintype() (AnymailInboundMessage method)

 	
 	get_content_subtype() (AnymailInboundMessage method)

 	get_content_text() (AnymailInboundMessage method)

 	get_content_type() (AnymailInboundMessage method)

 	get_filename() (AnymailInboundMessage method)

H

 	
 	html (anymail.inbound.AnymailInboundMessage attribute)

I

 	
 	inline_attachments (anymail.inbound.AnymailInboundMessage attribute)

 	
 	is_attachment() (AnymailInboundMessage method)

 	is_inline_attachment() (AnymailInboundMessage method)

M

 	
 	merge_data (anymail.message.AnymailMessage attribute)

 	merge_global_data (anymail.message.AnymailMessage attribute)

 	merge_metadata (anymail.message.AnymailMessage attribute)

 	message (anymail.signals.AnymailInboundEvent attribute)

 	
 	message_id (anymail.message.AnymailStatus attribute)

 	(anymail.signals.AnymailTrackingEvent attribute)

 	metadata (anymail.message.AnymailMessage attribute)

 	(anymail.signals.AnymailTrackingEvent attribute)

 	mta_response (anymail.signals.AnymailTrackingEvent attribute)

P

 	
 	
 Python Enhancement Proposals

 	PEP 8

R

 	
 	recipient (anymail.signals.AnymailTrackingEvent attribute)

 	recipients (anymail.message.AnymailStatus attribute)

 	reject_reason (anymail.signals.AnymailTrackingEvent attribute)

 	
 	
 RFC

 	RFC 2822

 	RFC 5322

S

 	
 	send_at (anymail.message.AnymailMessage attribute)

 	
 setting

 	ANYMAIL

 	ANYMAIL_AMAZON_SES_AUTO_CONFIRM_SNS_SUBSCRIPTIONS

 	ANYMAIL_AMAZON_SES_CLIENT_PARAMS

 	ANYMAIL_AMAZON_SES_CONFIGURATION_SET_NAME

 	ANYMAIL_AMAZON_SES_MESSAGE_TAG_NAME

 	ANYMAIL_AMAZON_SES_SESSION_PARAMS

 	ANYMAIL_IGNORE_RECIPIENT_STATUS

 	ANYMAIL_IGNORE_UNSUPPORTED_FEATURES

 	ANYMAIL_MAILGUN_API_KEY

 	ANYMAIL_MAILGUN_API_URL

 	ANYMAIL_MAILGUN_SENDER_DOMAIN

 	ANYMAIL_MAILJET_API_KEY

 	ANYMAIL_MAILJET_API_URL

 	ANYMAIL_MANDRILL_API_KEY

 	ANYMAIL_MANDRILL_API_URL

 	ANYMAIL_MANDRILL_WEBHOOK_KEY

 	ANYMAIL_MANDRILL_WEBHOOK_URL

 	ANYMAIL_POSTMARK_API_URL

 	ANYMAIL_POSTMARK_SERVER_TOKEN

 	ANYMAIL_REQUESTS_TIMEOUT

 	ANYMAIL_SENDGRID_API_KEY

 	ANYMAIL_SENDGRID_API_URL

 	ANYMAIL_SENDGRID_GENERATE_MESSAGE_ID

 	ANYMAIL_SENDGRID_MERGE_FIELD_FORMAT

 	ANYMAIL_SENDINBLUE_API_KEY

 	ANYMAIL_SENDINBLUE_API_URL

 	ANYMAIL_SEND_DEFAULTS

 	ANYMAIL_SPARKPOST_API_KEY

 	ANYMAIL_SPARKPOST_API_URL

 	ANYMAIL_WEBHOOK_SECRET

 	
 	spam_detected (anymail.inbound.AnymailInboundMessage attribute)

 	spam_score (anymail.inbound.AnymailInboundMessage attribute)

 	status (anymail.message.AnymailStatus attribute)

 	stripped_html (anymail.inbound.AnymailInboundMessage attribute)

 	stripped_text (anymail.inbound.AnymailInboundMessage attribute)

 	subject (anymail.inbound.AnymailInboundMessage attribute)

T

 	
 	tags (anymail.message.AnymailMessage attribute)

 	(anymail.signals.AnymailTrackingEvent attribute)

 	template_id (anymail.message.AnymailMessage attribute)

 	text (anymail.inbound.AnymailInboundMessage attribute)

 	
 	timestamp (anymail.signals.AnymailInboundEvent attribute)

 	(anymail.signals.AnymailTrackingEvent attribute)

 	to (anymail.inbound.AnymailInboundMessage attribute)

 	track_clicks (anymail.message.AnymailMessage attribute)

 	track_opens (anymail.message.AnymailMessage attribute)

U

 	
 	user_agent (anymail.signals.AnymailTrackingEvent attribute)

 _static/comment-bright.png

_static/ajax-loader.gif

_static/down-pressed.png

_static/down.png

_static/comment-close.png

_static/comment.png

_static/file.png

_static/minus.png

nav.xhtml

 Table of Contents

 		
 Anymail: Django email integration for transactional ESPs

 		
 Anymail 1-2-3

 		
 Installation and configuration

 		
 Installing Anymail

 		
 Configuring Django’s email backend

 		
 Configuring tracking and inbound webhooks

 		
 Anymail settings reference

 		
 Sending email

 		
 Django email support

 		
 HTML email

 		
 Attachments

 		
 Additional headers

 		
 Unsupported features

 		
 Refused recipients

 		
 Anymail additions

 		
 ESP send options (AnymailMessage)

 		
 ESP send status

 		
 Inline images

 		
 Global send defaults

 		
 AnymailMessageMixin

 		
 Batch sending/merge and ESP templates

 		
 ESP stored templates

 		
 Batch sending with merge data

 		
 Formatting merge data

 		
 ESP templates vs. Django templates

 		
 Tracking sent mail status

 		
 Normalized tracking event

 		
 Signal receiver functions

 		
 Pre- and post-send signals

 		
 Pre-send signal

 		
 Post-send signal

 		
 Exceptions

 		
 Receiving mail

 		
 Normalized inbound event

 		
 Normalized inbound message

 		
 Handling Inbound Attachments

 		
 Inbound signal receiver functions

 		
 Supported ESPs

 		
 Amazon SES

 		
 Installation

 		
 Limitations and quirks

 		
 Tags and metadata

 		
 esp_extra support

 		
 Batch sending/merge and ESP templates

 		
 Status tracking webhooks

 		
 Inbound webhook

 		
 Confirming SNS subscriptions

 		
 Settings

 		
 IAM permissions

 		
 Mailgun

 		
 Settings

 		
 Email sender domain

 		
 exp_extra support

 		
 Limitations and quirks

 		
 Batch sending/merge and ESP templates

 		
 Status tracking webhooks

 		
 Inbound webhook

 		
 Mailjet

 		
 Settings

 		
 esp_extra support

 		
 Limitations and quirks

 		
 Batch sending/merge and ESP templates

 		
 Status tracking webhooks

 		
 Inbound webhook

 		
 Mandrill

 		
 Settings

 		
 esp_extra support

 		
 Limitations and quirks

 		
 Batch sending/merge and ESP templates

 		
 Status tracking and inbound webhooks

 		
 Migrating from Djrill

 		
 Postmark

 		
 Settings

 		
 esp_extra support

 		
 Limitations and quirks

 		
 Batch sending/merge and ESP templates

 		
 Status tracking webhooks

 		
 Inbound webhook

 		
 SendGrid

 		
 Settings

 		
 esp_extra support

 		
 Limitations and quirks

 		
 Batch sending/merge and ESP templates

 		
 Status tracking webhooks

 		
 Inbound webhook

 		
 SendinBlue

 		
 Settings

 		
 esp_extra support

 		
 Limitations and quirks

 		
 Batch sending/merge and ESP templates

 		
 Status tracking webhooks

 		
 Inbound webhook

 		
 SparkPost

 		
 Installation

 		
 Settings

 		
 esp_extra support

 		
 Limitations and quirks

 		
 Batch sending/merge and ESP templates

 		
 Status tracking webhooks

 		
 Inbound webhook

 		
 Anymail feature support

 		
 Other ESPs

 		
 Tips, tricks, and advanced usage

 		
 Handling transient errors

 		
 Mixing email backends

 		
 Using Django templates for email

 		
 Helpful add-ons

 		
 Securing webhooks

 		
 Use https

 		
 Use a shared authentication secret

 		
 Signed webhooks

 		
 Additional steps

 		
 Testing your app

 		
 Batch send performance

 		
 Help

 		
 Troubleshooting

 		
 Support

 		
 Contributing

 		
 Contributors

 		
 Bugs

 		
 Pull requests

 		
 Testing

 		
 Documentation

 		
 Changelog

 		
 Release history

 		
 v6.0

 		
 v5.0

 		
 v4.3

 		
 v4.2

 		
 v4.1

 		
 v4.0

 		
 v3.0

 		
 v2.2

 		
 v2.1

 		
 v2.0

 		
 v1.4

 		
 v1.3

 		
 v1.2.1

 		
 v1.2

 		
 v1.1

 		
 v1.0

 		
 v1.0.rc0

 		
 v0.11.1

 		
 v0.11

 		
 v0.10

 		
 v0.9

 		
 v0.8

 		
 v0.7

 		
 v0.6.1

 		
 v0.6

 		
 v0.5

 		
 v0.4.2

 		
 v0.4.1

 		
 v0.4

 		
 v0.3.1

 		
 v0.3

 		
 v0.2

 		
 v0.1

 		
 0.1.dev2

 		
 0.1.dev1

 		
 Docs privacy

_static/up-pressed.png

_static/up.png

_static/plus.png

